PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Delineating groundwater potential zones using an integrated geospatial and geophysical approach in Phuentsholing, Bhutan

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Groundwater can serve as an alternative measure to solve the scarcity in perennial water sources. In this perspective, a study has been carried out in Phuentsholing, Bhutan, for demarcating the most probable zone for groundwater source by an integrated application of geospatial and geophysical survey. The seven contributing factors (i.e. geology, geomorphology, drainage, landuse landcover (LULC), normalized difference vegetation index (NDVI), lineament, and slope are evaluated. Subsequently, an Analytic Hierarchy Process (AHP) is also carried out to normalize the weightage and rank of the individual factors, which are further overlaid using the Weighted Index Overlay (WIO) algorithm. The resultant groundwater potential was categorized into: extremely high (0.7%), high (54%), moderate (12.5%), low (21%), and extremely low (12%) potential zones. Each of this category is further validated by Vertical Electrical Sounding (VES-3) using Schlumberger electrode configuration and identified the most probable groundwater exploration zones towards the south-western parts of the study area. Thus, the study emphasizes on significant role of remote sensing and geographic information system (GIS) in aggregation with the geophysical and statistical measures to delineate the most probable location for groundwater resources in the Himalayan region.
Czasopismo
Rocznik
Strony
341--357
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Centre for Space Science and Technology Education in Asia and The Pacifc (CSSTEAP), IIRS, Dehradun 248001, India
  • Civil and Surveying Department, Jigme Namgyel Engineering College, 41002 Dewathang, Bhutan
  • Geosciences Department, Geosciences and Disaster Management Studies Group, Indian Institute of Remote Sensing, ISRO, Dehradun 248001, India
  • Himalayan Geology and Mining Services (HGMS), 11001 Thimphu, Bhutan
  • Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand 248001, India
  • Centre for Space Science and Technology Education in Asia and the Pacifc, Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand 248001, India
Bibliografia
  • 1. Abdelouhed F, Ahmed A, Abdellah A, Yassine B, Mohammed I (2021) Using GIS and remote sensing for the mapping of potential groundwater zones in fractured environments in the CHAOUIA-Morocco area. Remote Sens Appl Soc Environ 23:100571. https://doi.org/10.1016/j.rsase.2021.100571
  • 2. Abdullah TO, Ali SS, Al-Ansari NA, Knutsson S (2015) Groundwater vulnerability mapping using lineament density on standard DRASTIC model: case study in Halabja Saidsadiq Basin, Kurdistan Region, Iraq. Engineering 07(10):644–667. https://doi.org/10.4236/eng.2015.710057
  • 3. El-Magd A, Ahmed S, Eldosouky AM (2021) An Improved approach for predicting the groundwater potentiality in the low desert lands; El-Marashda Area, Northwest Qena City, Egypt. J Afr Earth Sc 179:104200. https://doi.org/10.1016/j.jafrearsci.2021.104200
  • 4. Agarwal E, Rajat Agarwal RD, Garg, and P. K. Garg. (2013) Delineation of groundwater potential zone: An AHP/ANP approach. J Earth Syst Sci 122(3):887–898
  • 5. Ajibade FO, Olajire OO, Ajibade TF, Fadugba OG, Idowu TE, Adelodun B, Opafola OT, Lasisi KH, Adewumi JR, Pham QB (2021) Groundwater potential assessment as a preliminary step to solving water scarcity challenges in Ekpoma, Edo State, Nigeria. Acta Geophys 69(4):1367–1381. https://doi.org/10.1007/s11600-021-00611-8
  • 6. Anudu GK, Essien BI, Obrike SE (2012) Hydrologicl investigation and estimation of groundwater potentials of the lower palaeozoic to precambrian crystalline basement rocks in Keffi Area North-Central Negeria, using resistivity methods. Saudi Soc Geosci 7:311–322. https://doi.org/10.1007/s12517-012-0789-
  • 7. Arulbalaji P, Padmalal D, Sreelash K (2019) GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Sci Rep 9(1):2082. https://doi.org/10.1038/s41598-019-38567-x
  • 8. Bakr M (2015) Influence of groundwater management on land subsidence in deltas. Water Resour Manage 29(5):1541–1555. https://doi.org/10.1007/s11269-014-0893-7
  • 9. Berhanu KG, Hatiye SD (2020) Identification of groundwater potential zones using proxy data: case study of Megech Watershed, Ethiopia. J Hydrol Reg Stud 28:100676. https://doi.org/10.1016/j.ejrh.2020.100676
  • 10. Bhargava ON (1995) The Bhutan Himalaya A Geological Account. Geological Society of India, India
  • 11. Bharti AK, Pal SK, Saurabh KK, Singh K, Singh PK, Prakash A, Tiwari RK (2019) Groundwater prospecting by the inversion of cumulative data of wenner-schlumberger and dipole-dipole arrays: a case study at Turamdih Jarkhand, India. J Earth Syst Sci 128(4).
  • 12. Brunet P, Clément R, Bouvier C (2010) Monitoring soil water content and deficit using electrical resistivity tomography (ERT) – a case study in the Cevennes area, France. J Hydrol 380(1):146–153. https://doi.org/10.1016/j.jhydrol.2009.10.032
  • 13. Cardarelli, E, Giorgio De D (2019) Chapter 2 - Advances in electric resistivity tomography: theory and case studies. In: Advances in electric resistivity tomography: Theory and case studies. pp 23–57, ScienceDirect, Rome.
  • 14. Castellazzi, P, Richard M, Devin LG, Laurent L, Alfonso R (2016) Assessing groundwater depletion and dynamics using GRACE and InSAR: potential and limitations.
  • 15. DGM (2013) Technical feasibility study for the four critical landslides within the extended township of Phuentsholing. NAPA II. Phuntsholing: Department of Geology and Mine
  • 16. Doke AB, Zolekar RB, Patel H, Das S (2021) Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a Hardrock Basaltic Terrain in India. Ecol Ind 127:107685. https://doi.org/10.1016/j.ecolind.2021.107685
  • 17. Elbeih, SF (2015) An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. 6:1–15.
  • 18. Elmahdy, SI, Mohamed MM (2013) Groundwater potential modelling using remote sensing and GIS: a case study of the Al Dhaid area, United Arab Emirates
  • 19. Evans MA, Fischer MP (2012) On the distribution of fluids in folds: a review of controlling factors and processes. J Struct Geol 44:2–24. https://doi.org/10.1016/j.jsg.2012.08.003
  • 20. Nejad G, Samira FF, Daneshfar M, Haghizadeh A, Rahmati O (2016) Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto Int. https://doi.org/10.1080/10106049.2015.1132481
  • 21. Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the Hilly Terrain of Pavagarh, Gujarat, India. Water Int 35(2):233–245. https://doi.org/10.1080/02508061003664419
  • 22. GWP (2014) The links between land use and groundwater – governance provisions and management strategies to secure a ‘Sustainable Harvest.’ Sweden
  • 23. Gyeltshen S, Thuong TV, Gunda Teja GK, Suresh K, . Ray PKC, Chatterjee RS (2019) Groundwater potential zones using combination of geospatial technology and geophysical approach: case study in Dehradun, India. Hydrol Sci J
  • 24. Haque S, Kannaujiya S, Taloor AK, Keshri D, Bhunia RK, Ray PKC, Chauhan P (2020) Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundw Sustain Dev 10:100337. https://doi.org/10.1016/j.gsd.2020.100337
  • 25. Javhar A, Xi C, Anming B, Aminov J, Mamadjanov Y, Aminov J, Tuerhangiang L (2019) Comparison of multi-resolution optical landsat-8, sentinel-2 and radar sentinel-1 data for automatic lineament extraction: a case study of Alichur Area, SE Pamir. Remoe Sens 11(7)
  • 26. Jena S, Panda RK, Ramadas M, Mohanty BP, Pattanaik SK (2020) Delineation of groundwater storage and recharge potential zones using RS-GIS-AHP: application in Arable Land expansion. Remote Sens Appl Soc Environ 19:100354. https://doi.org/10.1016/j.rsase.2020.100354
  • 27. Kaliraj S, Chandrasekar N, Magesh NS (2013) Identification of potential groundwater recharge zones in Vaigai Upper Basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Saudi Soc Geosci. https://doi.org/10.1007/s12517-013-0849-
  • 28. Karunakalage A, Sarkar T, Kannaujiya S, Chauhan P, Pranjal P, Taloor AK, Kumar S (2021) The appraisal of groundwater storage dwindling effect, by applying high resolution downscaling GRACE data in and around Mehsana District, Gujarat, India. Groundw Sustain Dev 13:100559. https://doi.org/10.1016/j.gsd.2021.100559
  • 29. Khadka G, Pathak D (2021) Groundwater potential as an indicator of water poverty index in drought-prone mid-hill region of Nepal Himalaya. Groundw Sustain Dev 12:100502. https://doi.org/10.1016/j.gsd.2020.100502
  • 30. Kumar A, Krishna AP (2016) Assessment of groundwater potential zones in coal mining impated hard-rock Terrain of India by integrating geospatial and anlaytic heirarchy process (AHP) Process. Taylor Franis Online 33(2):105–129
  • 31. Kumar D, Ananda Rao V, Sarma VS (2014) Hydrogeological and geophysical study for deeper groundwater resource in Quartzitic hard rock ridge region from 2D resistivity data. J Earth Syst Sci 123(3):531–543
  • 32. Lakshmi SV, Vinay Kumar Reddy Y (2018) Identification of groundwater potential zones using GIS and remote sensing. Int J Pure Appl Math 119(7):3195–3210
  • 33. Long S, McQuarrie N, Tobgay T, Grujic D, Hollister L (2011) Geologic map of Bhutan. J Maps 7(1):184–192. https://doi.org/10.4113/jom.2011.1159
  • 34. Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Ttheni District, Tamil Nadu using remote sensing, GIS and MIF technique. Geoscience Fronteirs 3(2):189–196
  • 35. Mazaeva O, Babicheva V, Kozyreva E (2019) Geomorphological process development under the impact of man-made reservoir operation, a case study: Bratsk Reservoir, Baikal-Angara hydroengineering system, Russia. Bull Eng Geol Env 78(7):4659–4672. https://doi.org/10.1007/s10064-018-1428-x
  • 36. Melese T, Belay T (2022) Groundwater potential zone mapping using analytical hierarchy process and GIS in Muga Watershed, Abay Basin, Ethiopia. Global Chall 6(1):2100068. https://doi.org/10.1002/gch2.202100068
  • 37. MoWHS (2016) The 3rd UN conference on housing and sustainable urban development. National Report. 3rd UN Conference.
  • 38. Mundalik V, Fernandes C, Kadam AK, Umrikar BN (2018) Integrated geomorphological, geospatial and AHP technique for groundwater prospects mapping in Basaltic Terrain. Hydrospatial Analysis 2(1):16–27
  • 39. Murasingh S, Ramakar J (2013) Identification of groundwater potential zones using remote sensing and GIS in a mine area of Odisha. Indian School of Mines, Dhanbad
  • 40. Nagarajan M, Singh S (2009) Assessment of groundwater potential zones using GIS technique. J Indian Soc Remote Sens 37:69–77
  • 41. Pal SK, Majumdar TJ, Bhattacharya AK (2006) Extraction of linear and anomalous features using ERS SAR data over Singhbhum Shear Zone, Jharkhand using fast Frourier transform. Int J Remote Sens 27(20):4513–4528
  • 42. Pandian M, Jeyachandran N (2014) Groundwater quality mapping using remote sensing and GIS – a case study at Thuraiyur and Uppiliapuram Block, Tiruchirappalli District, Tamilnadu, India. 3(1):580–91.
  • 43. Pinto D, Shrestha S, Babel MS, Ninsawat S (2017a) Delineation of groundwater potential zones in the Comoro Watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Appl Water Sci 7(1):503–519. https://doi.org/10.1007/s13201-015-0270-6
  • 44. Pinto D, Shrestha S, Babel MS, Ninsawat S (2017b) Delineation of groundwater potential zones in the comoro watershed, timor leste using GIS, remote sensing and anlaytic hierarchey process (AHP) technique. Appl Water Sci (springerlink) 7:503–519. https://doi.org/10.1007/s13201-015-0270-6
  • 45. Rahamati O, Samani AN, Mohamad Mahadavi HR, Pourghasemi, and Hossein Zeinivand. (2014) Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. https://doi.org/10.1007/s12517-014-1668-4
  • 46. Rajaveni SP, Brindha K, Elango L (2017) Geological and geomorphological controls on groundwater occurence in a hard rock region. Appl Water Sci 7(3):1377–1389
  • 47. Saaty TL (1977) A scaling method for priorities in hierarchical strutures. J Math Psychol 15:234–281
  • 48. Sarkar T, Kannaujiya S, Taloor AK, Ray PKC, Chauhan P (2020) Integrated study of GRACE data derived interannual groundwater storage variability over water stressed Indian regions. Groundw Sustain Dev 10:100376. https://doi.org/10.1016/j.gsd.2020.100376
  • 49. Sarkar T, Karunakalage A, Suresh K, Charan C (2022) Quantification of groundwater storage variation in Himalayan & Peninsular River basins correlating with land deformation effects observed at different Indian cities. Contrib Geophy Geodesy 52(1):1–56. https://doi.org/10.31577/congeo.2022.52.1.1
  • 50. Schlumberger C (1912) Premières expériences. Carte Des Courbes Équipotentielles, Tracées Au Courant Continu Val-Richer (Calvados). Musée de Crèvecoeur En Auge, Calvados, France.
  • 51. Shao Z, Enamul Huq Md, Cai B, Altan O, Li Y (2020) Integrated remote sensing and GIS approach using fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environ Model Softw 134:104868. https://doi.org/10.1016/j.envsoft.2020.104868
  • 52. Singh KKK, Bharti AK, Pal SK (2019) Delineation of fracture zone for groundwater using combined inversion technique. Environ Earth Sci. https://doi.org/10.1007/s12665-019-8072-z
  • 53. Sreedevi PD, Subrahmanyam K, Ahmed S (2005) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled Terrain. Environ Geol 47(3):412–420. https://doi.org/10.1007/s00254-004-1166-1
  • 54. Toto EIA, Kerrouri C, Zouhri L, Basri MEI, Ibenbrahim A, Mohamed H, Benammi M (2008) Geoelectrical exploration for groundwater in AI Maha Forest, Ain Jouhra, Morocco. Hydrol Process 22:1675–1680
  • 55. USDA (2010) Geologic and groundwater considerations. In: Agricultural Waste Management Field Handbook. Vol. Part 651, Chapter 7
  • 56. Venkateswaran S, Ayyandurai R (2015) Groundwater potential zoning in upper Gdilam River Basin, Tamil Nadu. pp 1275–82 in Vol. 4. Tamil Nadu: Elsevier
  • 57. Wenner F (1915) A method of measuring earth resistivity. Bull Bureau Stand 12:469–478
  • 58. Zhou B (2018) Electrical resistivity tomography: a subsurface-imaging technique, applied geophysics with case studies on environmental, exploration and engineering geophysics. INTECHOPEN. https://doi.org/10.5772/intechopen.81511
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20eea71f-7cd4-4d0e-973f-c080b5625f08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.