Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Solvent extraction technology was applied to extract fluorosilicic acid from aqueous solution with trioctylamine (TOA) as extractant. The extraction mechanism of fluorosilicic acid with TOA was studied via stoichiometry methods combined with spectroscopic methods. The results of saturation capacity method and equimolar methods showed that there were two kinds of organic extracts produced with molar ratio of 1: 1 and 2: 1 in the system, whose chemical formulas were (R3N · H2SiF6)3 and [(R3N)2 · H2SiF6]2, respectively. Fuorosilicic acid was extracted with TOA via hydrogen bonds. The liquid-liquid phase equilibria of the ternary system fluorosilicic acid (1)-water (2)-TOA (3) from 283.15 K to 323.15 K were determined. The equilibrium phase diagram of the ternary system is obtained. The partition coefficient and separation factor were calculated to evaluate the extraction capacity of TOA for fluorosilicic acid, which showed that TOA exhibited high selectivity.
Czasopismo
Rocznik
Tom
Strony
11--22
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr., wz.
Twórcy
autor
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
autor
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
autor
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
autor
- State Key Laboratory of High Efficient Utilization of Middle and Low Grade Phosphate Rock and Its Associated Resources, Guiyang 550014, China
- WengFu Group Co. Ltd., Guiyang 550014, China
autor
- State Key Laboratory of High Efficient Utilization of Middle and Low Grade Phosphate Rock and Its Associated Resources, Guiyang 550014, China
- WengFu Group Co. Ltd., Guiyang 550014, China
autor
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
autor
- Guizhou Phosphate Chemical Group, Guiyang 550081, China
Bibliografia
- 1. Colton, E. (1958). Fluosilicic acid. J. Am. Chem. Soc. 35(11), 562. DOI: 10.1021/ed035p562.
- 2. Frazier, A.W., Lehr, J.R. & Dillard, E.F. (1977). Chemical behavior of fluorine in production of wet-process phosphoric acid. Environ. Sci. Technol. 11(10), 1007–1014. DOI: 10.1021/es60133a013.
- 3. He, B.B., Zhu, Y.Z., Zu, Y.N. & Mei, Y. (2023). Efficient and cost-effective fluorine recovery from liquid-phase wet-process phosphoric acid via two-step precipitation method. Sep. Purif. Technol. 325(15), 124687. DOI: 10.1016/j.seppur.2023.124687.
- 4. Chen, Y.X., Viridiana García-Meza, J., Zhou, B., Peng., Zhao, K., Chen, Q.K., Richard, M., Weng, X.Q., Li, H.Q. & Song, S.X. (2024). Efficient recovery of fluorine from wet-process phosphoric acid using silicon powder as a new and eco-friendly reagent. Sep. Purif. Technol. 337, 126435. DOI: 10.1016/j.seppur.2024.126435.
- 5. Habashi, F., & Awadalla, F. (1983). The removal of fluorine from wet process phosphoric acid. Separ SCI Technol. 18, 485–491. DOI: 10.1080/01496398308060289.
- 6. Peng, B.X., Ma, Z., Zhu, Y.B. & Tang, L.X. (2022). Release and recovery of fluorine and iodine in the production and concentration of wet-process phosphoric acid from phosphate rock. Miner. Eng. 188, 107843. DOI: 10.1016/j.mineng.2022.107843.
- 7. Gelmboldt, V.O. (2018). The properties of fluorosilicic acid: evolution of views on the state in aqueous solutions (overview). Russ. J. Inorg. Chem. 63(13), 1746–1751. DOI: 10.1134/S003602361813003X.
- 8. Vacca, M.A., Cara, C., Mameli, V., Sanna Angotzi, M., Scorciapino, M.A., Cutrufello, M.G., Musinu, A., Tyrpekl, V., Pala, L. & Cannas, C. (2020). Hexafluorosilicic acid (FSA): from hazardous waste to precious resource in obtaining high value-added mesostructured silica. ACS Sustain Chem. Eng. 8(38), 14286–14300. DOI: 10.1021/acssuschemeng.0c03218.
- 9. Thomsen, S.M. (1952). High-silica fluosilicic acids: specific reactions and the equilibrium with silica. J. Am. Chem. Soc. 74(7), 1690–1693. DIO: 10.1021/ja01127a023.
- 10. Dahlke, T., Ruffiner, O. & Cant, R. (2016). Production of HF from H2SiF6. Procedia Eng. 138, 231–239. DOI: 10.1016/j.proeng.2016.02.080.
- 11. Yang, H.C., Li, S.J., Yu, H.H., Liu, H.X., Sun, K. & Chen, X.L. (2024). Production of anhydrous hydrogen fluoride from fluorosilicic acid: a review. Front. Chem. 12, 1372981. DOI: 10.3389/fchem.2024.1372981.
- 12. Hoffman, F.T.D., Fuchs, G.H. & Stewart, R.C (2017), U.S. Patent No. 336,734. Allied Corporation, Morris Township, Morris County, N.J.
- 13. Houston, J.L.C.O.T. (1965), U.S. Patent No. 3,218,124. Washington, D.C.: U.S. Patent and Trademark Office.
- 14. Arianpour, F., Arianpour, A.Ç., Aali, B. (2021). Characterization and properties of sodium hexa-fluorosilicate and its potential application in the production of sodium fluoride. Silicon. 13(12), 4381–4389. DOI: 10.1007/s12633-020-00755-0.
- 15. Zhao, R.X. (2021). Exploration of industrial production process for magnesium fluorosilicate. Inorganic Salts Industry, 53(8), 79–82. DOI: 10.19964/j.issn.1006-4990.2020-0523.
- 16. Yu, Q. W., Yang, J. M., Zhang, H. R., Liang, P. Y., Gao, G., Yuan, Y. N., Dou, W. & Zhou, P. (2024). Investigations of the reaction mechanism of sodium with hydrogen fluoride to form sodium fluoride and the adsorption of hydrogen fluoride on sodium fluoride monomer and tetramer. J. Mol. Model. 30(2), 26. DOI: 10.1007/s00894-023-05821-z.
- 17. Morita, M.G., Giuseppe & Tokoro, C. (2017). Recovery of calcium fluoride from highly contaminated fluoric/hexafluorosilicic acid wastewater. Mater. Trans. 59(2), 290–296. DOI: 10.2320/matertrans.M-M2017850.
- 18. Huang, Z., Yu, S.Q., Gao, K.Y., He, J., Huang, H., Zhang, X.F. & Chen, X.Z,. (2020). Study on process technology of preparing NH4F and co-producing MgF2 with high impurity fluosilicic acid. IC Industry. 52(10), 110–116. DOI: 10.11962/1006-4990.2019-0609.
- 19. Wang, J.P., Xue, X.J. & Xue, F.F. (2024). Study on new process of preparing high-purity aluminium fluoride from fluorosilicic acid. IC Industry, 56(3), 86–90. DOI: 10.19964/j.issn.1006-4990.2023-0184.
- 20. Yu, H.R., Peng, H., Zhang, J.K., Jiang, W., Zhu, L.P., Ni, Y.H., Gan, H.X., Li, Y.H., Chen, F. Y., Du, X.Y. & Li, Y.G. (2022). A Method for determination of fluorine in silica produced by preparation of potassium fluoride from fluorosilicic acid. Yunnan Chem. Ind. 49(4), 74–76. DOI: 10.3969/j.issn.
- 21. Long, B.W., Wang, Z.L., Zhang, Q., Ke, W.C. & Ding, Y.G. (2018). Improved process to prepare high-purity anhydrous potassium fluoride from wet process phosphoric acid. Chem. Eng. Commun. 205(10), 1342–350. DOI: 10.1080/00986445.2018.1450246.
- 22. Jiang, K., Zhou, K.G., Yang, Y.C. & Du, H. (2013). A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor. J. Environ. Sci. 25(7), 1331–1337. DIO: 10.1016/S1001-0742(12)60204-6.
- 23. Jiang, Y.Z., Wang, L.H. & Zhang, Z.Y. (2013). Development and prospect for domestic and overseas white carbon black. Adv. Mat. Res. 826, 171–174. DOI: 10.4028/www.scientific.net/AMR.826.171.
- 24. Jin, L.F., Tie, L., Wang, X.Q. & Wu, Y.X. (2016). Synthesis of mesoporous titanosilicates from industrial by-product hexafluosilicic acid and application for catalytic cyclohexene epoxidation. CIESC J. 67(10), 4176–4186. DOI: 10.11949/j.issn.0438-1157.20160187.
- 25. Ge, X.L., Xu, HY., Liu, W.B., Wang, H. & Yang, H. (2023). Self-similar fractal characteristics of phosphorus slag powder particles and its effect on the mechanical properties of cementitious systems. Strength of Materials. 55(6), 1288–1296. DOI: 10.1007/s11223-024-00618-8.
- 26. Schlueter, N., Ganss, C., Mueller, U. & Klimek, J. (2007). Effect of titanium tetrafluoride and sodium fluoride on erosion progression in enamel and dentine in vitro. Caries Res. 41(2), 141–145. DOI: 10.1159/000098048.
- 27. Joshi, A.N. (2022). A review of processes for separation and utilization of fluorine from phosphoric acid and phosphate fertilizers. Chem. Papers. 76(10), 6033–6045. DOI: 10.1007/s11696-022-02323-9.
- 28. Ndiaye, S., Toure, A.O., Sambe, F.M., Diop, C.G.M., Prat, L. & Cassayre, L. (2022). Exploration of a two-step aqueous process for the valorization of sodium fluorosilicate (Na2SiF6), an intermediate product of the fluorosilicic acid conversion. Waste and Biomass Valorization. 13(1), 547–562. DOI ,: 10.1007/s12649-021-01496-w.
- 29. Wu, X.Q., He, Y.G., Zhang, N., Yan, R.Y. & Gao, L. (2019). China. Patent No. CN-109678159-A. Chinese Patent: Weng Fu Group Co ltd.
- 30. Zhou, Z.M.L., Z.Q. (2007). Concentrating dilute sulfuric acid by spray evaporator. Chem. Eng. J. 46, 1310–1316. DIO: 10.1016/J.CEP.2006.10.008.
- 31. Pehlivan, H.Ö., M. (2012). Experimental and theoretical investigations of falling film evaporation. Heat Mass Transfer. 48(6), 1071–1079. DIO: 10.1007/s00231-011-0962-x.
- 32. Tomaszewska, M. (2000). Concentration and purification of fluosilicic acid by membrane distillation. Ind. Eng. Chem. Res. 39(8), 3038–3041. DOI: 10.1021/ie9908534.
- 33. Lei, W. (2021). Application of low temperature concentration in fluorine recovery of wet process phosphoric acid. Fertilizer & Health. 48, 49–52. DOI:
- 34. Yu, Y.G., Zhang, X.C., Yi, L.X., Li, M., Zhang, F.Y. & Wei, J.J. (2022). Liquid–liquid Eequilibrium for ternary systems of ethylene glycol + 2-ethyl-1-hexanol + (water/n-heptane) at 298.2, 308.2, and 318.2 K. J. Chem. Eng. Data. 67(5), 1195–1204. DOI: 10.1021/acs.jced.1c00926.
- 35. Guerinoni, E., Dourdain, S., Lu, Z., Giusti, F., Arrachart, G., Couturier, J., Hartmann, D. & Pellet Rostaing, S. (2024). Highly efficient diluent-free solvent extraction of uranium using mixtures of protonated trioctylamine and quaternary ammonium salts. Comparative Life Cycle Assessment with the conventional extractant. Hydrometallurgy. 224, 106257. DOI: 10.1007/s12540-015-1020-x.
- 36. Li, D.B., Zhao, F.Q., Zhi, M.F., Zhou, Z.Q., Zhang, Y.M. & Shu, Z.J. (2016). Separation of zirconium and hafnium from nitric acid solution by solvent sxtraction ssing sributyl shosphate. Hydrometallurgy of China. 35(06), 507–512. DOI: 10.1016/j.jnucmat.2011.03.033.
- 37. Taghizadeh, M., Ghanadi, M. & Zolfonoun, E. (2011). Separation of zirconium and hafnium by solvent extraction using mixture of TBP and Cyanex 923. J. Nucl. Mater. 412(3), 334–337. DOI: 10.1016/j.jnucmat.2011.03.033.
- 38. Bao, J., Song, Y.H., Dong, P., Li, Y.F., Zhong, R.Y. & Liao, L. (2023). Extraction and enrichment of iron ions in cyanide tailings electrolyte. Adv. Chem. Eng. 42(1), 517–525. DOI: 10.16085/j.issn.1000-6613.2022-0580.
- 39. Song, Y.H., Li, Y.F., He, X.H., Zhang, H.J., Zhou, M. & Liu, G. (2021). Recycling of residual valuable metals in cyanide-leached gold wastewater using the N263-TBP system. J. Environ. 9(6), 106774. DOI: 10.1016/j.jece.2021.106774.
- 40. Feki, M., Stambouli, M., Pareau, D. & Ayedi, H.F. (2002). Study of the multicomponent system wet process phosphoric acid–methyl isobutyl ketone at 40 °C phase equilibria and extraction performances. Chem. Eng. J. 88(1), 71–80. DOI: 10.1016/S1385-8947(01)00246-7.
- 41. Dai, F.F., Cao, J.T., Liu, N., Peng, M.Y. & Wang, C. (2024). Determination and correlation of LLE data for n-hexane, ethyl acetate and different extractants. J. Chem. Thermodyn. 192, 107257. DOI: 10.1016/j.jct.2024.107257.
- 42. Ying, Z.W., Chen, M.H., Wu, G.X., Li, J., Liu, J.L, Wei, Q.F. & Ren, X.L. (2021). Separation and recovery vanadium (V) and chromium (VI) using amide extractants based on the steric hindrance effect. J. Chem. Thermodyn. 9(5), 105939. DOI: 10.1016/j.jece.2021.105939.
- 43. Li, Q., Cao, Y., Shao, X.Z., Xu, Z.H., Wang, Z.Z., Li, Y.S., Qin, Y.C. & Sun, D.J. (2023). Sulfonic-acid-based pseudo-gemini surfactant stabilized emulsions in acidic environments: removal of organic-inorganic hybrid blockage. J. Mol. Liq. 391, 123355. DOI: 10.1016/j.molliq.2023.123355.
- 44. Mundra, S.K., Pai, S.A. & Subramanian, M.S. (1987). Synergistic extraction of uranyl ion with acylpyrazolones and dicyclohexano-18-crown-6. J. Radioanal. Nucl. Chem. 116(1), 203–211. DOI: 10.1007/BF02037223.
- 45. Talnikar, V.D. Mahajan, Y.S. (2014). Recovery of acids from dilute streams : A review of process technologies. Korean J. Chem. Eng. 31(10), 1720–1731. DOI: 10.1007/s11814-014-0202-4.
- 46. Jiang, T., Wang, P.C., Zhang, T., Zhu, D.Q. & Liu, Z.H. (2023). A novel solvent extraction system to recover germanium from H2SO4 leaching liquor of secondary zinc oxide: Extraction behavior and mechanism. J. Clean Prod. 383, 135399. DOI: 10.1016/j.jclepro.2022.135399.
- 47. Kesieme, U., Chrysanthou, A., Catulli, M. & Cheng, C.Y. (2018). A review of acid recovery from acidic mining waste solutions using solvent extraction. J. Chem. Technol. Biotechnol. DOI: 10.1002/jctb.5728.
- 48. Jacobson, C.A. (1923). Fluosilicic acid. II. J. Phys. Chem. 27(8), 761–770. DOI: 10.1021/j150233a003.
- 49. Kirsch, T., Ziegenfuß, H. & Maurer, G. (1997). Distribution of citric, acetic and oxalic acids between water and organic solutions of tri-n-octylamine. Fluid Phase Equilibr. 129(1), 235–266. DOI: 10.1016/S0378-3812(96)03154-8.
- 50. Labbaci, A., Douani, M., Albet, J. & Kyuchoukov, G. (2012). Treatment of effluents issued from agro-food industries by liquid–liquid extraction of malic and lactic acids using trin-octylamine and tri-n-butyl phosphate. Ind. Eng. Chem. Res. 51(38), 12471–12478. DOI: 10.1021/ie301486m.
- 51. Kloetzer, L., Ilica, R.A., Cascaval, D. & Galaction, A.I. (2019). Separation of fumaric acid by amine extraction without and with 1-octanol as phase modifier. Sep. Purif. 227, 115724. DOI: 10.1016/j.seppur.2019.115724.
- 52. Yang, X., Zhang, Y.M. & Bao, S.X. (2016). Separation and recovery of sulfuric acid from acidic vanadium leaching solution of stone coal via solvent extraction. J. Environ. 4(1), 1399–1405. DOI: 10.1016/j.jece.2015.11.038.
- 53. Qiu, X.R., Chang, Z.D., Li, W.J., Zhou, H.L., Dong, B. & Qiao, L. (2012). Structural analysis of NH...O in viscoelastic scum formation during solvent extraction of sulfuric acid with trioctylamine. Sep. Purif. Technol. 95, 196–201. DOI: 10.1016/j.seppur.2012.05.008.
- 54. Baroncelli, F., Scibona, G. & Zifferero, M. (1962). The extraction of nitric acid by long chain tertiary amines. J. Inorg. Nucl. Chem. 24(4), 405–413. DOI: 10.1016/0022-1902(62)80037-2.
- 55. Wang, B.Q., Zhou, Q.L., Chen, C., Liu, H.F. & Yang, L. (2023). Separation of phosphoric acid and magnesium from wet process phosphoric acid by solvent extraction. Can. Metall. Q. 62(4), 791–802. DOI: 10.1080/00084433.2022.2152251.
- 56. Sato, T. (1966). The extraction of uranium (VI) from hydrochloric acid solutions by tri-n-octylamine. J. Inorg. Nucl. Chem. 28(6), 1461–1467. DOI: 10.1016/0022-1902(66)80179-3.
- 57. Wang, P.C., Liu, Z.H., Zhang, T., Liu, Z.Y., Zhu, D.Q. & Jiang, T. (2023). Extraction mechanism of germanium in sulfate solutions using a tertiary amine (N235)-based solvent extraction system. Sep. Purif. 311, 123305. DOI: 10.1016/j.seppur.2023.123305.
- 58. Heidari, A., Shahini, S., Haghshenas Fatmehsari, D. & Keshavarz Alamdari, E. (2023). A comparison between trioctylamine (TOA) and tris(2-ethylhexyl) amine (TEHA) in solvent extraction of sulfuric acid. Solvent Extr. Ion Exc. 41(6), 810–825. DOI: 10.1080/07366299.2023.2225067.
- 59. Shamsuddin, S., Awad, M., Xiang, P., Karamdoust, S., Landry, E. & Ebied, A. (2023). Detection of the butyl acrylate–vinyl acetate (BA–VA) copolymer in soil binders using gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR). Anal. Letters. 56(11), 1763–1772. DOI: 10.1080/00032719.2022.2145302.
- 60. Lopes de Mesquita Vieira, F., Eduardo Celino Benedito, L., Cézar de Oliveira Moreira, A., William Batista Braga, J. & Lima de Oliveira, A. (2024). Applicability of NMR in combination with chemometrics for the characterization and differentiation of oil-resin extracted from copaifera langsdorffii and copaifera spp. Microchem. J. 197, 109850. DOI: 10.1016/j.microc.2023.109850.
- 61. Barrow, G.M. (1956). The nature of hydrogen bonded ion-pairs: the reaction of pyridine and carboxylic acids in chloroform. J. Am. Chem. Soc. 78(22), 5802–5806. DOI: 10.1021/ja01603a022.
- 62. Kim, T.K., Chiola, V. & Aidin, H. (1968). Extraction of sulfuric acid in the tri-n-caprylamine-benzene system. J. Sep. Sci. 3(5), 455–465. DOI: 10.1080/01496396808052229.
- 63. Vachtová, J., Heyberger, A., Mrnka, M. & Procházka, J. (1999). Extraction of sulfuric acid with trialkylamine in a mixed diluent. Ind. Eng. Chem. Res. 38(5), 2028–2035. DOI: 10.1021/ie9807710.
- 64. Su, L., Pan, B.C., Sun, Z., Song, P. & Song, X.F. (2021). Extraction kinetics of nitric acid from the nitric acid-hydro-chloric acid-potassium chloride solution by tributyl phosphate. Sep. Purif. 274, 118984. DOI: 10.1016/j.seppur.2021.118984.
- 65. Schunk, A. & G. Maurer. (2003). Distribution of hydro-chloric, nitric, and sulfuric acid between water and organic solutions of tri-n-octylamine: Part II. Methylisobutylketone as organic solvent. Fluid Phase Equilibr. 211(2), 189–209. DOI: 10.1016/S0378-3812(03)00179-1.
- 66. Hu, X.L. (2021) Liquid–lquid equilibrium in the nitric acid+calcium nitrate+water+tri-n-octylamine system. Chengdu University of Technology, Sichuan Province, China.
- 67. Jia, X.X., Li, J., Jin, Y., Luo, J.H., Wang, B.M. & Qi, Y.B. (2013). Liquid–liquid equilibrium in the nitric acid/phosphoric acid/water/tri-n-octylamine system. J. Chem. Eng. Data. 58(1), 78–83. DOI: 10.1021/je300917b.
- 68. Procházka, J., Heyberger, A. & Volaufová, E. (2003). Sulfuric acid extraction with trialkylamine effect of xylene and n-octanol as modifiers. Ind. Eng. Chem. Res. 42(21), 5305–5311. DOI: 10.1021/ie020864o.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20ee39e1-f248-479f-8b6d-f51c1ab8598c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.