Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: In this paper, in vivo methods of estimation of the shear modulus and hydraulic permeability of subcutaneous tissue of lower limb are presented. Methods: The experimental technique is based on single- or two-chamber inflation-deflation tests in which temporal changes in limb circumference under the test chamber for cyclic loading are registered. Simplified models for fast undrained deformation and slow creep of oedematous tissue with squeezing out interstitial liquid were considered. Finite element simulations of the chamber test within a finite deformation poroelastic model were elaborated. Results: Formulas necessary to estimate the shear modulus and permeability of subcutaneous tissue were derived and then tested or calibrated using the results of poroelastic simulations. An example of application of the derived formulas for clinical data obtained from the chamber test was discussed. Conclusions: A simple in vivo methods of estimation of the hydromechanical properties of lymphedematous tissue (shear modulus and permeability) were proposed. The strengths and weaknesses of the proposed methodology were discussed.
Czasopismo
Rocznik
Tom
Strony
149--161
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Department of Mechatronics, Kazimierz Wielki University, Bydgoszcz, Poland
autor
- Department of Mechatronics, Kazimierz Wielki University, Bydgoszcz, Poland
autor
- Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
autor
- Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- [1] AVRIL S., EVANS S., (eds.) Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics, Springer Int., 2017.
- [2] BOYER G., PAILLER MATTTEI C., MOLIMARD J., PERICOI M., LAQUIEZE S., ZAHOUANI H., Non contact method for in vivo assessment of skin mechanical properties for assessing effect of ageing, Medical Eng. Phys., 2012, 34, 172–178.
- [3] CASLEY-SMITH J.R., The fine structure and functioning of tissue channels and lymphatics, Lymphology, 1980, 12, 177–183.
- [4] CHAN W.-H., HUANG Y.-L., LIN C., LIN C.-Y., CHENG M.-H., CHU S.-Y., Acoustic radiation force impulse elastography: Tissue stiffness measurement in limb lymphedema, Radiology, 2018, 289, 759–765.
- [5] COWIN S,C., DOTY S.B., Tissue mechanics, Springer Science, 2007.
- [6] DRAGAN S.Ł., KUROPKA P., KULEJ M., GABRYŚ P., NIKODEM A., Changes in the mechanical properties of femoral cartilage tissue in advanced osteoarthritis, Acta Bioeng. Biomech., 2020, 22 (1), 143–152.
- [7] FELDMAN J.L., STOUT N.L., WANCHAI A., STEWART B.R., CORNIER J.N., ARMER J.M., Intermittent pneumatic compression therapy: A systematic review, Lymphology, 2012, 45, 13–25.
- [8] FRAUZIOLS F., MOLIMARD J., NAVARRO L., BADEL P., VIALLON M., TESTA R., AVRIL S., Prediction of the biomechanical effects of compression therapy by finite element modeling and ultrasound elastography, IEEE Trans. Biomedical Eng., 2015, 62, 1011–1019.
- [9] GUYTON C., SCHEEL K., MURPHREE D., Interstitial fluid pressure: III. Its effect on resistance to tissue fluid mobility, Circulation Research, 1966, 19, 412–419.
- [10] HARA H., MIHARA M., Comparison of two methods, the sponge method and Young’s modulus, for evaluating stiffness of skin or subcutaneous tissue in the extremities of patients with lymphedema: A pilot study, Lymphat. Res. Biol., 2018, 16, 464–470.
- [11] IIVARINEN J.T., KORHONEN R.K., JULKUNEN P., JURVELIN J.S., Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device, Med. Eng. Phys., 2011, 33, 1245–1253.
- [12] IIVARINEN J.T., KORHONEN R.K., JULKUNEN P., JURVELIN J.S., Experimental and computational analysis of soft tissue mechanical response under negative pressure forearm, Skin. Res. Techn., 2013, 19, e356–e365.
- [13] KACZMAREK M., OLSZEWSKI W.L., NOWAK J., ZALESKA M., The hydromechanics of edema fluid in lymphedematous lower limb during intermittent pneumatic compression, Lymphat. Res. Biol., 2015, 13, 260–267.
- [14] KACZMAREK M., SUBRAMANIAM R., NEFF S., The Hydro-Mechanics of Hydrocephalus: Steady State Solutions for Cylindrical Geometry, Bull Math. Biol., 1997, 59, 295–323.
- [15] LI C., BORJA R.J., REGUEIRO R.A., Dynamics of porous media at finite strain, Comput. Methods Appl. Mech. Eng., 2004, 193, 3837–3870.
- [16] LORET B., SIMOES F.M.F., Biomechanical aspects of soft tissues, CRC Press, 2017.
- [17] OLSZEWSKI W.L., JAIN P., AMBUJAM G., ZALESKA M., CAKALA M., GRADALSKI T., Tissue fluid pressure and flow in the subcutaneous tissue in lymphedema-hints for manual and pneumatic compression, Phlebolymphology, 2010, 17, 144–150.
- [18] PAILLER-MATTEI C., BEC S., ZAHOUANI H., In vivo measurements of the elastic mechanical properties of human skin by indentation tests, Med. Eng. Phys., 2008, 30, 599–606.
- [19] ROCKSON S.G., Lymphedema, Am. J. Med., 2001, 110, 288–295.
- [20] WIIG H., SWARTZ M.A., Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer, Physiol. Rev., 2012, 92, 1005–1060.
- [21] ZALESKA M., OLSZEWSKI W.L., DURLIK M., The effectiveness of intermittent pneumatic compression in long-term therapy of lymphedema of lower limb, Lymphat. Res. Biol., 2014, 12, 103–109.
- [22] ZALESKA M., OLSZEWSKI W.L., CAKAŁA M., CWIKLA J., BUTLEWSKI T., Intermittent pneumatic compression enhaces formation of edema tissue fluid channels in lymphedema of lower limbs, Lymphat. Res. Biol., 2015, 13, 146–153.
- [23] ZALESKA M., OLSZEWSKI W.L., DURLIK M., KACZMAREK M., A Novel Clinical Test for Setting Intermittent Pneumatic Compression Parameters Based on Edema Fluid Hydromechanics in the Lymphedematous Calf, Lymphat. Res. Biol., 2015, 13, 208–214.
- [24] ZHENG Y.-P., MAK A.F.T., LUE B., Objective assessment of limb tissue elasticity: development of a manual indentation procedure, J. Rehab. Res. and Dev., 1999, 36, 71–85.
- [25] ZHENG Y.-P., HUANG Y.-P., Measurement of soft tissue elasticity in vivo, CRC Press, 2016.
- [26] ZINGERMAN K.M., LEVIN V.A., Some qualitative effects in the exact solutions of the Lame problem for large deformations, J. Appl. Math. Mech., 2012, 76, 205–219.
- [27] ŻMUDZIŃSKA M., INGLOT M., ZALESKA-DOROBISZ U., JANKOWSKI L., ŚWIĄTEK-NAJWER E., The assessment of the applicability of shear wave elastography in modelling of the mechanical parameters of the liver, Acta Bioeng. Biom., 2018, 20 (4), 59–64.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20ec39dc-d232-458d-90b5-52dc567a911e