PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of Moving Chord Length for Determining the Curvature of In-Service Railway Track

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the still unexplained issue of the choice of chord length, which will be the most benefi cial when determining the horizontal curvature of railway track with the use of the moving chord method. In the railway track – with an incorrect choice of the chord length – the horizontal track deformations and coordinate measurement error may cause irregular curvature diagrams, which will be difficult to interpret. The study analysed three test geometric layouts adapted to the speeds of 80 km/h, 120 km/h and 160 km/h (the radii of circular curves determined as a result of the curvature estimation performed were approximately 410 m, 880 m and 1480 m, respectively). The lengths of the moving chord in the range of 10÷50 m were considered. On the basis of the conducted analysis, it was unequivocally demonstrated that the chord length used to determine the curvature in the railway track should depend on the value of the radius of the circular curve. Approximate lengths lc were proposed depending on the range of the RCA radius. The adaptation of the moving chord method to the adopted measurement procedure presented in this paper and the way of using the obtained curvature diagram, provide the appropriate application basics.
Rocznik
Tom
Strony
147--160
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Gdańsk University of Technology
Bibliografia
  • 1. Deutsche Bahn: 883.2000 DB_REF-Festpunktfeld, Deutsche Bahn Netz AG, Berlin, Germany, 2016.
  • 2. European Committee for Standardization (CEN): Railway applications -Track—Track alignment design parameters—Track gauges 1435 mm and wider. Part 1: Plain line. EN 13803-1, Brussels, Belgium, 2010.
  • 3. Federal Railroad Administration: Code of federal regulations title 49 transportation, US Government Printing Office, Washington, DC, 2008.
  • 4. Network Rail: N R/L3/TRK/0030 NR Reinstatement of Absolute Track Geometry (WCRL Routes), Iss. 1, London, UK, 2008.
  • 5. New South Wales: Standard: Railway Surveying, Version 1.0. T HR TR 13000 ST, Government (Transport for NSW), Sydney, Australia, 2016.
  • 6. Österreichische Bundesbahnen: Linienführung von Gleisen, B 50 – Oberbau – Technische Grundsätze. Teil 2, GB Fahrweg Technik, Wien, Austria, 2004.
  • 7. Standardy Techniczne – Szczegółowe warunki techniczne dla modernizacji lub budowy linii kolejowych do prędkości Vmax ≤ 200 km/h (dla taboru konwencjonalnego) / 250 km/h (dla taboru z wychylnym pudłem) – TOM I – DROGA SZYNOWA – Załącznik ST-T1-A6: Układy geometryczne torów, PKP Polskie Linie Kolejowe S.A., Warszawa, 2018.
  • 8. Schweizerische Bundesbahnen: Ausführungsbestimmungen zur Eisenbahnver-ordnung. SR742.141.11, Ministerium für Verkehr, Bern, Switzerland, 2016.
  • 9. Szwilski A.B. et.al.: Employing HADGPS to survey track and monitor movement at curves, In Proc. 8th Int. Conf. „Railway Engineering 2005”, London, UK, Engineering Technics Press, Edinburgh.
  • 10. Li W. et.al.: A method for automatically recreating the horizontal alignment geometry of existing railways, Computer Aided Civil and Infrastructure Engineerig, vol. 34, iss. 1/2019. pp. 71–94, Wiley Online Library.
  • 11. Pu H. et.al.: A global iterations method for recreating railway vertical alignment considering multiple constraints, IEEE Access, vol. 7, iss. 1/2019, pp. 121199–121211, Institute of Electrical and Electronics Engineers.
  • 12. A guide to using IMU (accelerometer and gyroscope devices) in embedded applications, Starlino Electronics, 2009, Web side: http://www.starlino.com/imu_guide.html.
  • 13. Guimarães-Steinicke C. et.al.: Chapter Four – Terrestrial laser scanning reveals temporal changes in biodiversity mechanisms driving grassland productivity, Advances in Ecological Research, vol. 61, 2019, pp. 133−161, Academic Press.
  • 14. Alkan R.M.: Cm-level high accurate point positioning with satellite-based GNSS correction service in dynamic applications, Journal of Spatial Science, vol. 66, iss. 2/2019, pp. 351-359, Taylor & Francis.
  • 15. Chang, L. et.al.: Railway infrastructure classifi cation and instability identifi cation using Sentinel-1 SAR and Laser Scanning data, Sensors, vol. 20, iss.24/2020, 7108, Multidisciplinary Digital Publishing Institute.
  • 16. Quan, Y., Lau L.: Development of a trajectory constrained rotating arm rig for testing GNSS kinematic positioning, Measurement, vol. 140, 2019, pp. 479–485, Elsevier.
  • 17. Wang, L. et.al.: Validation and assessment of multiGNSS real-time precise point positioning in simulated kinematic mode using IGS real-time service, Remote Sensing, vol. 10, iss. 2/2018, 337, Multidisciplinary Digital Publishing Institute.
  • 18. Wu S. et.al.: Improving ambiguity resolution success rate in the joint solution of GNSS-based attitude determination and relative positioning with multivariate constraints, GPS Solution, vol. 24, iss. 1/2020,31, Springer.
  • 19. Koc W.: Design of rail-track geometric systems by satellite measurement, Journal of Transportation Engineering, vol. 138, iss. 1/2012, pp. 114−122, American Society of Civil Engineers.
  • 20. Koc W.: Analytical method of modelling the geometric system of communication route, Mathematical Problems in Engineering, vol. 2014, 679817, Hindawi Publishing Corporation.
  • 21. Koc W.: Design of compound curves adapted to the satellite measurements, The Archives of Transport, vol. 34, iss. 2/2015, pp. 37−49, Polska Akademia Nauk, Komitet Transportu.
  • 22. Koc W.: Design of reverse curves adapted to the satellite measurements, Advances in Civil Engineering, vol. 2016, 6503962, Hindawi Publishing Corporation.
  • 23. Koc W.: The method of determining horizontal curvature in geometrical layouts of railway track with the use of moving chord, Archives of Civil Engineering, vol. 66, iss. 4/2020, pp. 579−591, Politechnika Warszawska, Wydział Inżynierii Lądowej.
  • 24. Koc W.: Analysis of the effectiveness of determining the horizontal curvature of a track sxis using a moving chord, Problemy Kolejnictwa, 2021, z. 190, s. 77−86.
  • 25. Koc W.: Analysis of moving chord inclination angles when determining curvature of track axis, Current Journal of Applied Science and Technology, vol. 40, iss. 10/2021, pp. 92–103, Article no. CJAST.68309,SCIENDOMAIN International.
  • 26. Koc W.: Estimation of the horizontal curvature of the railway track axis with the use of a moving chord based on geodetic measurements, Journal of Surveying Engineering, vol. 148, iss. 4/2022,04022007, American Society of Civil Engineers.
  • 27. Rozporządzenie Rady Ministrów z dnia 15 października 2012 r. w sprawie państwowego systemu odniesień przestrzennych, Dz.U., 2012, poz. 1247.
  • 28. Moritz H.: Geodetic Reference System 1980, Bulletin Géodésique, vol. 54, iss. 3/1980, pp. 395–405, Springer Link.
  • 29. Turiũo C.E.: Gauss Krüger projection for areas of wide longitudinal extent, International Journal of Geographical Information Science, vol. 22,iss. 6/2008, pp. 703−719, Taylor & Francis Online.
  • 30. Koc W.: Identification of geometrical parameters of an operational railway route determined by the curvature of the track axis, European Journal of Applied Sciences, vol. 10, iss. 5/2022, pp. 129−148, Services for Science and Education, United Kingdom.
  • 31. Koc W. et.al.: Determining horizontal curvature of railway track axis in mobile satellite measurements, Bulletin of Polish Academy of Sciences: Technical Sciences, iss. 6/2021, e139204, Polska Akademia Nauk.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20e21d28-12d0-411f-be6c-31045361d395
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.