PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cathodoluminescence color zonation in the Antarctic meteorite (enstatite chondrite) of Yamato 86004

Identyfikatory
Warianty tytułu
Konferencja
Conference Proceedings of the 4th Asia Pacific Luminescence and Electron Spin Resonance Dating Conference Nov 23rd-25th, 2015, Adelaide, Australia.
Języki publikacji
EN
Abstrakty
EN
Enstatite in Yamato 86004 classified as EH melt rock shows cathodoluminescence (CL) zonation as arranged in a concentric pattern from within outward blue, light blue, red and non-CL areas (fusion crust). The zonation observed in the meteorite results from different distribution ratio of the enstatite with various CL colors. CL spectra of the enstatite have two broad emission bands at around 400 nm in the blue region and at around 670 nm in a red region. The emission components obtained by a spectral deconvolution can be assigned to three defect centers (2.73, 3.13–3.15 and 3.77 eV) in a blue region and to impurity centers of Cr3+ ion (1.71 eV) and Mn2+ ion (1.86–1.91 eV) in a red region. According to the CL related to structural defects in the enstatite, blue-CL enstatite might be originally formed from the melt by a quenching from the melt on the surface of parent body. The enstatite with light blue and red CL might be thermally altered from blue-CL enstatite with phase transitions during a flash heating when the meteorite passed through the atmosphere. Therefore, the color CL zonation reflects a thermal history recorded in the meteorite.
Wydawca
Czasopismo
Rocznik
Strony
136--141
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Department of Biosphere-Geosphere Science, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama, Okayama, 700-0005 Japan
autor
  • Department of Applied Physics, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama, Okayama 700-0005, Japan
autor
  • Department of Applied Physics, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama, Okayama 700-0005, Japan
autor
  • Department of Applied Physics, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama, Okayama 700-0005, Japan
autor
  • Department of Biosphere-Geosphere Science, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama, Okayama, 700-0005 Japan
Bibliografia
  • 1. Bottke WF Jr, Nolan MC, Greenberg R and Kolvoord RA, 1994. Collisional lifetimes and impact statistics of near-Earth asteroids. In Hazards due to comets and asteroids, edited by Gehrels T., Tucson: The University of Arizona Press, 337–357.
  • 2. Catalano M, Bloise A, Pingitore V, Miriello D, Cazzanelli E, Giarola M, Mariotto G and Barrese E, 2014. Effect of Mn doping on the growth and properties of enstatite single crystals. Crystal Research and Technology 49: 736–742, DOI 10.1002/crat.201400102.
  • 3. Derham CJ, Geake JE and Walker G, 1964. Luminescence of enstatite achondrite meteorites. Nature 203: 134–136, DOI 10.1038/203134b0.
  • 4. Gasparik T, 1990. Phase relations in the transition zone. Journal of Geophysical Research 95: 15751–15769, DOI 10.1029/JB095iB10p15751.
  • 5. Gucsik A, 2009. Shock metamorphism of terrestrial impact structures and its application in the Earth and planetary science. In Cathodoluminescence and its application in the planetary science, edited by Gucsik A., Berlin Heidelberg, Springer-Verlag, 23–43.
  • 6. Gucsik A, Tsukamoto K, Nishido H, Miura H, Kayama M, Ninagawa K and Kimura Y, 2012. Cathodoluminescence microcharacterization of forsterite in the chondrule experimentally grown under super cooling. Journal of Luminescence 132: 1041–1047, DOI 10.1016/j.jlumin.2011.12.011.
  • 7. Ikenaga M, Nishido H, Ninagawa K, 2000. Performance and analytical conditions of cathodoluminescence scanning electron microscope (CL-SEM). Bulletin of Research Institute of Natural Sciences Okayama University of Science 26: 61–75.
  • 8. Keil K, 1968. Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research 73: 6945–6976, DOI 10.1029/JB073i022p06945.
  • 9. Kimura M, Weisberg MK, Lin Y, Suzuki A, Ohtani E and Okazaki R, 2005. The thermal history of the enstatite chondrites from silica polymorphs. Meteoritics and Planetary Science 40: 855–868.
  • 10. Kobayashi Y, 1974. Anisotropy of thermal diffusivity in olivine, pyroxene and dunite. Journal of Physics of the Earth 22: 359–373.
  • 11. Lin Y and Kimura M, 1998. Petrographic and mineralogical study of new EH melt rocks and a new enstatite chondrite grouplet. Meteoritics and Planetary Science 33: 855–868.
  • 12. Lofgren GE and Dehart JM, 1992. Dynamic crystallization studies of enstatite chondrite chondrules: cathodoluminescence properties of enstatite. Abstracts of the Lunar and Planetary Science Conference 23: 799–800.
  • 13. Marfunin AS, 1979. Spectroscopy, Luminescence and radiation centers in minerals. Springer, Verlag, New York.
  • 14. Melcher CL, 1979. Kirin meteorite: temperature gradient produced during atmospheric passage. Meteoritics and Planetary Science 14: 309–316.
  • 15. Matsunami S, Ninagawa K, Nishimura S, Kubono N, Yamamoto I, Kohata M, Wada T, Yamashita Y, Lu J, Sears D and Nishimura H, 1993. Thermoluminescence and Compositional Zoning in the Mesostasis of a Semarkona Group A1 Chondrule and New Insights into the Chondrule-forming Process. Geochimica et Cosmochimica Acta 57: 2101–2110, DOI 10.1016/0016-7037(93)90096-F.
  • 16. Moncorgé R, Bettinelli M, Guyot Y, Cavalli E, Capobianco JA and Girard S, 1999. Luminescence of Ni2+ and Cr3+ centers in MgSiO3 enstatite crystals. Journal of Condensed Matter 11: 6831–6841, DOI 10.1088/0953-8984/11/35/319.
  • 17. Ohgo S, Nishido H and Ninagawa K, 2015. Cathodoluminescence characterization of enstatite. Journal of Mineralogical and Petrological Science 110: 241–246, DOI 10.2465/jmps.150713b.
  • 18. Rawer K, 1984. Modelling of Neutral and Ionized Atmospheres. In Handbuch der Physik Encyclopedia of Physics, edited by Rawer K., Heidelberg, Springer Verlag, 223.
  • 19. Reid AM, Bunch TE and Cohen AJ, 1964. Luminescence of orthopyroxenes. Nature 204: 1292–1293, DOI 10.1038/2041292a0.
  • 20. Rubin AE and Scott ERD, 1997. Abee and related EH chondrite impactmelt breccias. Geochimica et Cosmochimica Acta 61: 425–435, DOI 10.1016/S0016-7037(96)00335-3.
  • 30. Sears DW, 1975. Temperature gradients in meteorites produced by heating during atmospheric passage. Modern Geology 5: 155–164.
  • 31. Shoemaker EM, 1962. Interpretation of lunar craters. In Physics and astronomy of the Moon, edited by Kopal Z., New York: Academic Press, 283–359.
  • 32. Steele IM, 1988. Enstatite cathodoluminescence: Assignment of emission peaks to Cr and Mn and application to quantitative analysis. Meteoritics and Planetary Science 23: 303.
  • 33. Swamy V, Saxena S, Sundman B and Zhang J, 1994. A thermodynamic assessment of silica phase diagram. Journal of Geophysical Research 99: 11787–11794, DOI 10.1029/93JB02968.
  • 34. Weisberg MK, Prinz M and Fogel RA, 1994. The evolution of enstatite and chondrules in unequilibrated enstatite chondrites: Evidence from iron-rich pyroxene. Meteoritics and Planetary Science 29: 362–373.
  • 35. Yanai K and Kojima H, 1995. Catalog of the Antarctic meteorites. National Institute of Polar Research, Tokyo, Japan, 230.
  • 36. Zhang Y, Huang S, Schneider D, Benoit PH, Dehart JM, Lofgren GE and Sears DWG, 1996. Pyroxene structures, cathodoluminescence and the thermal history of the enstatite chondrites. Meteoritics and Planetary Science 31: 87–96.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20d11e87-f4f8-4de0-8cfa-8b41b65e4763
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.