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Abstract. This paper presents the results of a numerical analysis of the elastic-plastic behaviour of steel
compression members subjected to compression with a permanent pre-deformation in the longitudinal
axis by a longitudinal indispensable shock load. A differential load intensity was considered up to
the loss of stability. A finite difference method was applied, with an explicit integration schema
for the time of the dynamic stability equations. It was assumed that the precursor to the unstable
behaviour of a steel compression member was a continuous deformation of the rod axis, which was
defined according to current industry-standard design procedures. Cases of flexible and stiff rods,
varying in slenderness, were considered. It was demonstrated that a significant load on the performance
of the steel compression members and their buckling mechanisms is attributable to longitudinal
wave effects. These longitudinal wave effects cause high-frequency changes in the axial forces with
a significant stress concentration due to the effect of reflection from a pinned support. This is critical
for the dissipation of internal energy by plastic deformation. The applied research method facilitated
an estimation of the dynamic critical forces and their relationships with static values.
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1. Introduction

The dynamic stability of rods is a problem widely covered in the reference
literature. Examples of this include monographs [1] and [2]. The loss of stability
of a straight rod with a pivot support under a shock load P(t) = const was studied
in [3]. The analysis was based on an elastic dynamic equation derived without
consideration of the stiffening principle. The analysis did not consider axial vibration
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or the risk of plastification in the cross-sections. [4] was a study of an inelastic
behaviour of square beams and H-beams subjected to high-intensity transverse shock
loads. The loads initiated elastic-plastic behaviour, exhibited by moderately high
deflections. The behaviour of the beams was tested with the simultaneous application
of a longitudinal boundary force of varying intensity. The described behaviour
of the beams included longitudinal vibration. The values of the longitudinal force,
which triggered unlimited displacement, were determined. This reference can be
understood as testing the stability of eccentrically-compressed steel rods.

This work considered the problem of the dynamic behaviour of compressed steel
rods which feature a circular-tubular cross-section. The steel rods were exposed to
impact loads which could have resulted in buckling of the former. A longitudinal
compressive force applied to a steel rod retained its intensity, sense and direction
of action over a long time frame. This type of load could be qualified in the category
of exceptional loads, a major object of focus in modern structural design standards [5].

The loss of stability of a steel rod depends on Euler’s limit of slenderness. Under
these conditions, elastic and non-elastic buckling cases are studied, in which the steel
rods are defined as flexible steel rods and stiff steel rods. In the cases of dynamic
shock loads, this definition of the steel rods should not be applied to determine
the nature of buckling. Under a longitudinal boundary force with a steady intensity,
a steel rod may suffer elastic-plastic deformation. If the elastic-plastic deformation
is not increased without any limit, the steel rod should be deemed to be conforming
to the load applied to it. The loss of stability is always concomitant to an avalanche
process of inelastic failures, which is an unlimited increase in the plastic deformation,
resulting in an uninhibited dissipation of internal energy. It would be interesting
to estimate the value of the dynamic critical force at which the destructive effects
of buckling occur. The destructive effects of buckling are always preceded by an initial
phase, which may fail to change into the uninhibited failure phase if explosive
decaying loads are present. A determination of the initial phase duration may provide
useful data for the design of structural components exposed to short explosive loads.

This paper presents the solutions of the problems of the dynamic behaviour
of a steel rod loaded with a longitudinal boundary force, with the assumption that
the steel rod has an initial sine-form camber. The sense of this camber is a corresponding
fractional length of the steel rod. It was assumed by the authors that the initial sine-form
camber provides a more accurate representation of real-life cases and could reflect
a continuous geometric imperfection caused by manufacturing processing of the steel
rod, and a certain random eccentricity of the application of the compressive force [6].

In this work, the longitudinal wave behaviour of steel rods was considered without
transverse loads and with preset geometrical imperfections along the longitudinal
axis. It was assumed that the stock material of a steel rod has an ideal elastic-plastic
behaviour. The effect of the propagation of longitudinal waves was considered with
their interaction with transverse vibration, generated by a dynamic loss of stability.
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The dynamic longitudinal displacement and deflections were assumed to be small
and interposed on the initial deformation, which required dynamic balance equations
defined under the moderately high deflection theory. The system of dynamic balance
equations included the preset initial deformation of the steel rod; the description
of the load states did not include indeterminate internal stresses.

2. Basic equations

The static diagram and the load on the steel rod are shown in Fig. 1. To assume
the method for discretization of the steel rod, the axial load P(t) was assumed to be
applied to the boundary mass m,. The initial deformation of the axis of the steel
rod were input as follows:

1, (3, 0) = w sin 2 (1)
_ H
with: k=1, 2,...

P(t)

mA“‘ 74

Zw

BA 7

Fig. 1. Static diagram of a compressed steel rod and the form of its initial axis deformation at k = 1.

The amplitude of initial deflection was assumed according to the generalized
imperfections defined in [1];

H
w, =—, M =500, 250, 200, 150. (2)
M

This deformation of the axis of the steel rod initiated a destabilization behaviour
in the steel rod, which could in turn initiate the process of stability loss.

The analysis discussed here was carried out with a system of equations specific
to low dynamic longitudinal displacements v(x, t) and moderately high dynamic
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deflections w(x, t). The moderately high dynamic deflections were superposed
on the preliminary imperfections in the description of the geometrical changes:

ow, ow o*w
+ 5| S 20
{Q (ax axﬂ “or =0

oM
=g, (3)
x Mor

The values of Q(x, t), M(x, t) and S(x, t) were the internal forces in the deformed
steel rod; 4 = p * A — unit mass of the steel rod with cross-section A, p — specific
density of steel.

Note that the equation (3); features the forces of inertia being a consequence
of the dynamic deflection w(x, t) only, which was measured along the axis
of the deformed steel rod. The forces of longitudinal inertia were approached
in an analogous manner, and the equation (3); could be transformed to accentuate
the propagation of a longitudinal wave,

v v
Ewelwey
ox ot
E
with a = \/: being the velocity of the longitudinal wave in elastic deformation. This
p

=0 (4)

form was not used, given that this work considered plastic deformation. The dyna-
mic boundary conditions resulted from the conditions of the bearing of the steel
rod and the boundary effect:

M(0,6)=0,  M(H,)=0.
2 (5)
m, % = P(1)

x=0

S(0,7)cos(0)+ 0(0,7)sinr (0) -

o(w, +w)
ox

with angle «, = } . For the investigated deflections of the value
(x=0,7)

cosa(0) =1, whereas sina(0)=a(0). P(t) was the force of constant direction,

P(t) = F,..for....t 2 0. The solution of the system of equations (3) required reduc-
ing the system to a displacement form. This was done by applying the geometrical
relationships with the dynamic deformations, the longitudinal strain of the axis
of the steel rod v(x, t) and the steel rod’s curvature x(x;, t) associated with the dynamic
deflection w(x, t),
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’*w
P

If the state of load of the cross-section existed in an elastic range, the following
relations applied:

(6)

e(x,t)= % K(x,t)=—

S(x,t) =FEA*xe(x,t), M (x,t) = EJ *Kk(x,t) (7)

The internal forces in the elastic-plastic range were determined appropriately
for the values of the deformation resulting from the flat cross-section assumed here.

e(x,z,0) = e(x,t) + k(x,1) * z. (8)

The distribution of stresses in the cross-sections were integrated by layered
discretization of the cross-sections.

3. The discrete model of the steel rod and difference equation

The numerical solutions to the problems of dynamic inelastic behaviour
of the steel rod were achieved by applying the discrete model shown in Fig. 2(a).
The circular-tubular cross-section of the steel rod was replaced with a system of 14
layers with different cross-sections, based on inner diameter d,, and outer diameter d,.
The discrete model of the steel rod was determined according to the general
principles for construction of discrete models of longitudinal wave propagation
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Fig. 2. Spatial discretization of the steel rod: (a) the system of focused masses along the steel rod
compressed with a schematic initial deflection; (b) the discretization of the cross-section of the steel
rod, with the layers numbered.
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in rods [7]. The principles comprise the division of the steel rod into nodes with
discrete masses, interlinked with deformable straight sections. A valid description

of longitudinal wave behaviour required forming the initial half mass 7, = 5 Am from

a boundary part of the steel rod. This provided the required formation of the wave
penetrating the steel rod from the application of an external load, and the wave
reflected from the same support as a free boundary and caused by the generated
wave being a wave reflected from pinned support B and reaching roller support A.
The effects of longitudinal deformation were attributed to the deformable straight
sections, whereas the effects of elastic deformation were the transverse displacements
attributed to the focused masses of the discrete model. A proof of the stresses was
then carried out at a cross-section of the focused mass where the bending moment
was known. The longitudinal force Sy 5(f) associated with the bending moment
was determined by introducing a correction of the sectional value of S(t) according
to the formula below:

Si0s)=8,()+ %Amiik. 9)

The propagation of the wave penetrating the steel rod by the action of the external
boundary load P(t) required a singular temporal discretization of that load’s action
[8] by using the formula:

0,5P(0),...n=1
P@")=+ -
“) Propnar @), when...n> 1} =P, (10)

The longitudinal vibrations were determined by simultaneously mapping
the transverse vibrations caused by the initial imperfection, a destabilization factor
of the steel rod’s behaviour.

The cases contemplated here did not permit an error-free differential
approximation [8]. Hence it was necessary to investigate the stability of numeric
procedures and the convergence of solutions.

The essential components of a computer program designed to determine
the acceleration values at the start of a time step " were:

2 2 "
s o8, =AM AW agAY (11)
Am Ax Ax Ax

The increments of displacements and the displacements at the end of the same

time step were determined as follows.

v, =
k

AV = Av T T AL AW = AwT i A,
n+l _ . n n,n+1 ntl _ _n n,n+1 (12)
v, =v AT Wl =w] + Aw



Stability analysis of steel compression members under shock loads 113

Based on these results, the deformation at the start of the time step t"*! were
determined for cross-sectional layer j of the steel rod located at node k, pursuant
to the assumption of the cross-section being flat (8),

el = e z()). (13)

With the known deformations in the cross-sectional layers until the time #**1
inclusive, it was possible to determine the deformations according to the adopted
physical model of the steel rod’s material. Based on the integral summation definitions
of the internal forces, the active internal forces S, and M|’ in the compressed steel
rod were determined, and based on (3),, the passive force O, was determined.

This procedure facilitated an analysis of the behaviour of a steel rod subjected
to a shock load which induced a dynamic and high-frequency process dominated
by compression. The process originated from the behaviour of the eccentrically
compressed steel rod within the limits of elastic or elastic-plastic deformations, and
initially without any manifestation of instability effects. At a high intensity of applied
compressive force, symptoms of stability loss could appear as avalanche-intensified
elastic-plastic deformations, i.e. the unlimited dissipation of internal energy.

4. Analytical program and numerical results illustrating
a dynamic behaviour with loss of stability of the steel rods

The behaviour of three steel rods was investigated. The steel rods were
made of §235 grade steel and had the form of round tubes with inner diameter
¢ =101.6 mm, wall thickness g = 8.8 mm and cross-section A = 0.00257 m?. Euler’s
limit of slenderness of the steel rods was I,, = 96. The compressed steel rods were
assumed to feature simple support conditions, with the flexibility determined
by the varying length, respectively: H; = 5.40 m, H, = 3.60 m, and H; = 2.80 m.
The slenderness values of the steel rods were: [; = 164 > [, [, = 109 > ,, and
A=84.8< lg,. The values of the static critical forces, determined with Euler’s formula
for flexible steel rods “1” and “2”, and Tetmajer-Jasinski’s formula for steel rod “3”

were:

P =194,5kN, PP =437,6kN, P3) =5655kN.

Each of the steel rods had an axial imperfection resulting from M = 200
in the formula (2). The discretization of the axes of the steel rods featured 14 sections
with Ax = 0.17 m. The intensity of the dynamic longitudinal shock load was analysed
at values related to the static critical forces, where P(¢)= P, = nP. = const.

The longitudinal deformations of the steel rods” axes were caused by the propagation
of a longitudinal wave plus the effects of reflection from the steel rod’s boundaries,
the pinned support, and the roller support, which was the end point of the steel rod.
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The longitudinal forces, which varied along the steel rods, caused a moment behaviour
in the cross-sections with an initial deformation defined in (2).

The illustration of the results of numerical analysis for an extremely flexible
steel rod is shown in Figs. 3, 4 and 5.

Figs. 3 and 4 show the behaviour of the steel rod which did not suffer buckling
and with varying plastic deformations caused by transverse vibration of the steel rod.

The results of the numerical analysis presented here indicated that the values
of dynamic shock force, which were slightly below the static critical force and 16%
above the value, caused the steel rod to behave like an eccentrically compressed
element within the limits of elastic-plastic deformation caused by transverse and
longitudinal vibrations. This behaviour was dominated by a bending deformation
mechanism. This was partial to a temporal change in the dynamic deflection
of the centre of the steel rod. (Fig 3 a). There was a certain dynamic axial displacement
of the end of the steel rod. These phenomena were caused by the permanent
longitudinal effects generated within the zone at the pinned support, mostly due
to wave reflections. The permanent deformations determined the nature of elastic
vibration in the first section of the discrete model.

An analogous characterization of the behaviour of the extremely flexible
steel rod applied during exposure to a shock force Py = #*P,, = 225.6 kN, = 1.16.
The lack of stability loss of the steel rod at the values analysed here was demonstrated
by the stabilisation of energy dissipation which followed relatively long time periods,
expressed by the multiplicity of the basic period T, determined for the steel rod
represented by a deflected beam. The periods could be qualified as the period
of adaptation of the steel rods to the action of the applied dynamic load.

The stability of the steel rod was lost at a dynamic compressive force 20% above
the static critical force. The dynamic character of the loss of stability of the steel rod
was illustrated by the avalanche increment of the deflection in the centre of the steel
rod, see Fig. 5.

Figs. 6, 7 and 8 show the numerical analysis results for a case of a flexible steel rod
exposed to dynamic forces defined by #, = 0.5 and 7, = 0.8. The steel rod demonstrated
a stable behaviour following the emergence of elastic-plastic deformations. The energy
dissipation by plastic deformation was located mainly based on the deflection
behaviour of the steel rod, i.e. the significant deflection of its middle cross-section.
The dynamic deflections of the steel rod in the presence of longitudinal forces result
in the formation of plastification zones in the middle section. Figs. 6(a) and 7(a)
illustrate the emergence of permanent dynamic deformation of the axis of the steel
rod. The assumed deformation model of the ideally elastic-plastic material and
the high intensity of the shock load caused permanent deflections, around which
non-attenuated transverse vibrations were found. These were secondary elastic
vibrations. The vibrations died away after the initial period, which was equal to approx.
1600 x T, in both cases. Moreover, the steel rod suffered an energy dissipation caused
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Fig. 5. Dynamic deflection of the centre of the steel rod with length H = 5.4 m at P, = #*P,, = 233.4 kN,
n=12,P,=1945kN.

by the effects of the reflection of the wave of axial stresses, which occurred along
the section adjacent to the pinned support, see Figs. 6(c) and 7(c). A consequence
of the plastic deformation in this location was the longitudinal displacement of the end
of the steel rod, see Figs. 6(b) and 7(b). The displacements were not elastic-plastic;
they were elastic only. The permanent displacement as suggested in the figures was
not caused by inelastic deformations in the first section of the discrete model, but
by the plastification of the sections located at the bottom pinned support, where
the effects of reflection of the longitudinal wave were cumulative.

The temporal profiles of variations in the energy dissipation are shown
in Figs. 6(d) and 7(d). The energy dissipation process ended after approximately
2700 x T,. This would seem to be partial to the evolution of a long-term longitudinal
deformation process of the section adjacent to the pinned support. Expressed in units
of time, the period of this process was approximately 130 s.

The result being the estimate of the period was a consequence of the theoretical
assumptions of the numerical analysis. The propagation of the axial wave
considered in the computer program was not attenuated, i.e. there was no decay
in the discontinuity of the reflections generated by the effects. Consequently,
an ideally elastic-plastic model of the material was applied with a definition typical
of wave mechanics. The longitudinal waves did not generate any transverse waves;
they did, however, cause cumulative increments in the plastic deformations within
the area of the pinned support. The diagram of the support did not reflect its capacity
for absorption of the energy of the longitudinal waves. Hence, the support only
generated the effects of reflections.

The loss of stability was caused by a dynamic force at an intensity of #, = 0.9,
as shown in Fig. 8. The figure shows that the avalanche increase in the dynamic
deflection began after the period of initial vibrations, which featured acceptable
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Fig. 8. Dynamic deflection of the centre of the steel rod with a length H = 3.6 m at the dynamic
force Py = #*P,, = 393.8 kN, = 0.9.

deformations. That period was estimated to be 1200 x T long, i.e. approximately
58 s. This large deceleration of the effects of avalanche stability loss was caused
by the previously discussed singularities in the analysis of the longitudinal waves.
Omitting the wave analysis would result in a longitudinal force at a constant value
of P, along the entire steel rod. Inclusion of the effects of propagation of the waves
reduced the effect of destabilization of the steel rod. The effects of longitudinal waves
were cumulative mostly at the bottom pinned support. The central part of the steel
rod revealed significant transient discharges, with very short transient tensions. This
would explain the duration before the avalanche stability loss.

Figs. 9 and 10 illustrate the behaviour of a stiff steel rod, length H = 2.80 m
exposed to a shock load at the critical intensity P,, = 5.P 1, at # = 0.5 and
n = 0.75. Note the general conclusion drawn from the analyses of the problems
of stability of the steel compression members contemplated here as exposed to
static loads. There is no indication that deflection failure mechanisms would
evolve; plastification states were only reached in the cross-sections under eccentric
compression; see the concepts by Tetmajer-Jasinski or Johnson-Ostenfelf [9]. It would
be natural for a dynamic analysis that stiff steel rods would not feature a typical
mechanism of stability loss, but the limit state, due to the excessive longitudinal
plastic deformations concentrated at the pinned support. The discovered deflection
of the steel rod were not intensified, which was confirmed by the missing beam
failure mechanism typical of flexible rods. The figures illustrate the initial periods
of behaviour of the steel rod without any symptoms of loss of stability; the only
symptoms found included a significant load in plastic deformations. The effort was
caused by the emergence of significant axial deformations in the lower sections
of the discrete model. The axial deformations this high, and expressed as percentage
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values, necessitated analysis according to the theory of high deformation, and
a due consideration of the localized effects of instability in tubular steel rods,
i.e. the instability of the rod wall. For the given steel rods, it would be possible to
analyse this at much higher loads, exceeding the static critical force. No results were
presented due to their unreliability. The applied theory of definition was adopted
in this paper for low deformation values, which resulted in high deformation values.

5. Conclusions

The numerical analyses based on a conditionally stable difference method
demonstrated that the cases of the flexible steel rod and the stiff steel rod necessitated
the application of varying values of the time steps for equation integration over time.
The definition of behaviour of the flexible steel rod was feasible when the time step
Aty,, was applied and corresponding to the critical value consistent with the proper
analysis of longitudinal waves, i.e.

At,, = Ax\/% =3,044%10"[s]. (14)

The critical step had to be evaluated with the formula derived in [10] for the stiff
steel rod. The value was derived from this formula:

(15)

The condition (15) was derived in reference to the compressive force P the value
of which was assumed to be positive. The form (and the form of the formula (14))
required a suitable selection of the spatial step Ax. Given formula (15), the step

should satisfy this condition:
EJ
Ax<2,|—
\p (16)

Condition (16) was retained in the adopted discretization of the steel rods
in the numerical analyses. The presented numerical results were confirmed
by adopting a half-sized division step of the length of the steel rod, which validated
the convergence of the results obtained in this work.

The action of a non-decaying shock load caused an avalanche stability loss, albeit
after a certain time. This period of time was defined by the slenderness of the steel rod
relative to Euler’s limit of slenderness. The data presented for the duration indicated
that as far as exceptional decaying shock loads are concerned, it would be feasible
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to choose their duration of action which, at a specific intensity of the shock loads,
would not result in a dynamic stability loss, and be limited to inelastic deformations
only. This conclusion constitutes a singularity caused by the inclusion of the effect
of the lengthwise axis of the steel rods according to the longitudinal wave behaviour.
This effect was not investigated in other research into dynamic instability. There is
a theoretical and unnatural schematisation of the lower end support of the steel rods.
It provided ideal conditions of reflection of the longitudinal wave, devoid of energy
dissipation in the three-dimensional medium of the end support.
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A.BRZUZY, G. BAK

Analiza statecznosci pretow stalowych poddanych dzialaniu obcigzenia
uderzeniowego

Streszczenie. W artykule przedstawiono wyniki analizy numerycznej reakcji sprezysto-plastycznej
pretow Sciskanych ze wstepna deformacja trwalg ich osi podluznych pod dzialaniem wzdluznego,
nieusuwalnego obcigzenia uderzeniowego. Rozpatrzono zréznicowang intensywnos¢ obciazenia do
wywolania utraty statecznoéci wiacznie. Wykorzystano metode réznic skoficzonych z jawnym schematem
calkowania wzgledem czasu réwnan dynamicznej rOwnowagi. Przyjeto, ze czynnikiem inicjujacym
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niestabilne zachowanie preta jest ciagta deformacja osi preta ujmowana zgodnie z aktualnymi pro-
cedurami projektowymi. Analizie poddano prety o zréznicowanej smukloéci, kwalifikowanych, jako
wiotkie i krepe. Wykazano, ze bardzo duzy wplyw na wytezenie pretow i mechanizmy wyboczenia
majg efekty falowe wzdluzne. Powodujg one szybkozmienne zmiany wartosci sit poosiowych oraz
istotng koncentracj¢ naprezen na skutek zjawisk odbicia od nieprzesuwnej podpory. Decyduje to
o dyssypacji energii wewnetrznej na odksztalceniach plastycznych. Zastosowana metoda rozwiazania
umozliwila oszacowanie wartosci dynamicznych sil krytycznych i ich relacji do wartoéci statycznych.
Stowa kluczowe: prety ze wstepna deformacja osi, reakcja sprezysto-plastyczna, statecznos¢ dyna-
miczna preta, aproksymacja roznicowa, efekty falowosci poosiowe;j

DOI: 10.5604/01.3001.0011.8051






