INFORMATION
SYSTEMS IN
MANAGEMENT Information Systems in Management (2015) Vol. ¥ 813

ADAPTING SBA OPTIMIZATION METHODS DEVOTED TO
QUERIES HAVING SUBQUERIES TYPED BY ENUMERATIONS
FOR XQUERY EXPRESSIONS

MICHAL BLEJA

Faculty of Mathematics and Computer Science, Usityeof Lodz

The paper presents the concepts related to thgrdesi query optimization
methods for nested queries. The proposed metheddealicated for queries having
so called weakly dependent subqueries. A subqueryeiakly dependent from its
direct operator if it depends only on expressioned by enumerations. We have
successfully developed the weakly dependent suksguarethod in the context of
object-oriented database management systems baseftack-Based Approach.
Systems storing XML data which are queried usingu¥) can be considered
simplified object-oriented databases. For this arase try to adopt SBQL query
optimization methods to XQuery expressions.

Keywords: query optimization, XQuery, enumerationeakly dependent subquery,
Stack-Based Approach, SBQL

1. Introduction

A query optimization [1,2] is aimed at radical wedthg of the query
processing time. It must take into consideratiothbitne time needed for the
optimization and the processing time after optimgzi There are many various
optimization methods in contemporary database nemagt systems. Some of
them assume using redundant data structures daligzes [3]. Other techniques
cope with caching query results [4] and differetategies of physical data
organization. The major group of methods conceraryguewriting [5, 6, 7, 8].

Rewriting consists in translating an original quémo a semantically equivalent
form ensuring better performance.

The ODRA (Object Database for Rapid Application Blepment) [9, 10, 11]
prototype is the main component of the EuropeafeprtcEGov Bus [12]. It is
equipped with a very powerful query optimizer. larjcular, the optimizer deals
with optimization methods based on query rewritiigmong them we can mention
the method of weakly dependent subqueries [5, 6himg selection before
structure operators [7], the method of independahtueries [8]. These techniques
have been developed in the context of the Stackd@gpproach [13, 14] and its
query/programming language SBQL. SBA constitutesurdform conceptual
platform for object-oriented databases which umilgr covers two aspects:
querying and programming. It allows to constructirajzation methods in their
full generality. The rewriting rules presented % ¢, 7, 8, 14] deal with any data
model (assuming that its semantics would expresgedierms of SBA).
In particular, they hold for the relational mod#le XML model [15] and any
version of object-oriented model. The rules cope alith any operators and make
no assumptions concerning the complexity of subgs@f a given query.

The XQuery [16, 17] semantics can be defined usimy SBA concepts.
It requires introducing three data structures whach essential for the precise
semantic description: an object store, an envirarinstack, and a query result
stack. Besides a special phase called static andlys, 20] is required to equip
XQuery expressions with the information essentialdetecting subqueries typed
by enumerations. At this moment we translate b¥§oery expressions (so called
FLOWR expressions) into their SBQL equivalents. $Bfperies are rewritten by
the ODRA optimizer and then converted into XQuemng® We plan to define the
XQuery semantics using SBA concepts in the future.

The research presented in this paper concerns snedated to optimization
of nested queries. We deal with a special classubfjueries of a given query
referred to as weakly dependent subqueries [3;8).dependency is considered in
the context of query operators such as selectigantifiers, joins, etc. A subquery
is weakly dependent from its direct operator if thependency concerns only an
expression which is typed by the enumeration. Tumaber of evaluations of such
the subquery can be limited to the number of enatoes occurring in the
enumeration on which it depends. For instance denghe query which returns
each employee earning above the average salarylaiaid for all employees
having his/her gender. Without optimizing the sulrgucalculating the average
salary for genders would be evaluated hundred$iaustinds of times, while it
could be evaluated only 2 times (once assungiegder= "male" and next one
assuminggender= "female"). This subquery is a classical exangfle weakly
dependent subquery.

2. The Stack-Based-Approach

The Stack-Based Approach [13, 14] presents thet rilgaory for object-
oriented databases and their query/programmingukeges. We present these
concepts of the Stack-Based Approach which arentakéo the development of
optimization methods for queries having weakly dejsnt subqueries. SBA
involves the following concepts [13, 14]:

e naming-scoping-binding - each name in a query/@nogis bound to a suitable
run-time entity depending on the scope for it.

» environment stack - it is responsible for bindirmgnes, procedure/method calls,
scope control.

 total internal identification - each entity mustvhaa unique internal identifier.

* o0bject relativity - objects are treated uniformlpdahave the same formal
properties regardless of the hierarchy level atiithey occur.

SBA introduces a family of object store models N, M2, and M3 [14]. The

simplest is MO which deals with relational and XMtiented data structures. In

the MO model each object is a triple consistingfnternal identifier, an external

name and a value. The M1 model extends MO withsela@nd static inheritance.

Classes are understood as objects which storeiamsr(e.g. methods) of their

instances. M2 extends M1 by the concept of dynarbject role. M3 augments M2

with the encapsulation mechanism.

SBQL is described in detail in [13, 14]. The syntdbEBQL is as follows:

e A single name or a single literal is an atomic gu@.g.emp dept salary,
"Smith", 3000).

« If gis a query and(e.g.sumavg -) is a unary operator thefiq) is a query.

» If g, andq, are queries anéis a binary operator (e.where =, +, quantifier
thenq, &, is a query.

XML (Extensible Markup Language) [15] is a flexiltiext format applied to store
and exchange data. There are several databasetprdgdicated to store XML
data. Among them we can mention Oracle XML DB, é&Xis, Apache Xindice.
XQuery [16, 17] is a query language for addresXiht}. data. It navigates through
XML documents using XPath [18] expressions. QueriesXQuery are often
formulated using so called FLOWR [16, 17] (for,, lerder by, where, return)
expressions. To present XQuery examples we assulklie documents which
correspond to the schema presented in Figure linBtance, the following query
returns employees earning more than 3000 @defunction is applied to open
XML documents):
for $emp i n doc("company.xml")//emp

wher e $emp/salary>3000 (2)
return $emp

Our optimization methods are entirely performecblfa query is executed. It

requires a special phase called static analysisl

B.20] which simulates run-time

actions during compilation-time. It uses an abssgotax tree (AST) of a given query
to perform static type checking. The static analysmits on three data structures:
a metabase, a static environment stack SENVS, atatdi@query result stack SQRES.

<?xml version="1.0"?>
<xs:schemaxmins:xs="http://www.w3.0rg/2001/XMLSchem

<xs:simpleType name="enum_gender">
<xs:restriction base="xs:string">
<xs:enumeration value="male"/>
<xs:enumeration value="female"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="enum_education">
<xs:restriction base="xs:string">
<xs:enumeration value="vocational"/>
<xs:enumeration value="secondary"/>
<xs:enumeration value="higher"/>
</xs:restriction>
</xs:simpleType>

<xs:element name="emp">
<xs:complexType>
<xs:sequence>
<xs:element name="fname" type="xs:string"/>
<xs:element name="Iname" type="xs:string"/>
<xs:element name="salary" type="xs:float"/>
<xs:element name="gender" type="enum_gender"/>
<xs:element name="education" type="enum_education"/
<xs:element name="overtime" type="xs:positivelntege
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="depts">
<xs:complexType>
<xs:sequence>
<xs:element name="dept" maxOccurs="50">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="employs">
<xs:complexType>
<xs:seguence>

<xs:element ref="emp" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

a'>

r'/>

Figure 1. Sample XML schema

6

The metabase models statically the object stoiie.dénerated from an XML
schema. SENVS reflects binding operations perform@d the run-time
environment stack. SQRES stores signatures ofritegniediate and final query
results. The static analysis causes among othatr 1t
« Each name in a query is equipped with the orderbeunof a stack section

which is relevant for binding it.
« Each non-algebraic operator is assigned to ther@mwient stack section(s)
which it opens.

In SBA detecting weakly dependent subqueries isda® analyzing scoping and
binding rules for names occurring in queries. Aqudry is weakly dependent from
its direct non-algebraic operator if it involves@me which can be statically bound
to an enumerated type in the scope opened by flesator [5, 6]. Other names
should be bound outside that scope. A subquerglisccindependent if none of its
names is bound in the stack section opened byréstdperator [8, 14].

3. Optimization of queries involving weakly dependet subqueries

The approach involves the following steps:

< Translating an XQuery expressigninto its SBQL equivaler,.

« Performing static analysis gf and detecting weakly dependent subqueries.

e Transforming the query, into a semantically forngs; according to the
rewriting rule dedicated to weakly dependent suliqad5, 6].

« Applying the independent subquery method [8, 14pjolet g, denote the
result of applying this method tg.

« Convertingg, into its XQuery counterpat.

* Runninggsagainst the underlying XML data store.

The following example presents the general ideth@fabove approach. The query
gets each employee who has the overtime hoursegrémtn the average overtime
hours calculated for all employees having his/luercation.

for $emp i n doc("company.xml")//emp

wher e $emp/overtime>

avg(doc("company.xml")//emp[education=$emp/educatio n)/overtime))
return $emp

Consider the following subquery (3) of (2):

avg(doc("company.xml")//emp[education=$emp/educatio n}/overtime) 3)

Without optimizing the subquery (3) will be evaledt once for each
employee (it can be thousands of times). Howevas itlear that (3) can be
processed only three times. The expres§iemp/educationn (3) can take only
three values: occupational, secondary, and higiercall the subquery (3) weakly

dependent because it depends from its parent qomely on the expression
$emp/educationtyped by the enumeratiornum_education{"occupational,
"secondary”, "higher"}. How such a query can beedttd and how a general
rewriting rule should look like?

After translating the query (2) into its SBQL coertart it takes the form (4).
For the query below we determine binding levelsit®mames and the number of
scopes opened by the non-algebraic operators.

emp as $emp wher e $emp . overtime>

1 2 23 3

avg((emp wher e education=$emp . education).overtime) 4
1 3 3 24 4 3 3

The operatoasnames each element in a bag or sequence retuyreeduery.
The group asoperator names the whole query result. For instaiica queryq
returns a collectiobag{el, e2 €3 ... }, then a queryg as auxeturns the collection
of bindersbag{auxel), auxe?), auxed), ... }. A queryq group as auxeturns a
single bindemauxbag{ el, e2 €3 ... }). The following subquery of (4)

avg((emp wher e education=$emp.education).overtime) (5)

is weakly dependent from the firgthere operator because it contains only the
nameeducatioifin the expressiofemp.educatignwhich is statically bound to the
enumeratiorenum_educatioim the scope opened by this operator. Other names
the subquery (5) are not bound in the second stadltion. Denote (5) by
wdq$emp.education Then, the original query (4emp as $emp where
$emp.overtime>wd$emp.educationcan be transformed to (6):

emp as $emp where if $emp.education = "vocational" t hen
$emp.overtime>wds("vocational"
el se i f $emp.education = "secondary" t hen (6)
$emp.overtime>wds("second ary")

el se $emp.overtime>wds("higher")

After unfolding (6) we retrieve the query (7).

emp as $emp where

1 2
i f $emp.education = "vocational" t hen $emp.overtime>
23 3 23 3
avg((emp wher e education="vocational").overtime)
1 3 3 3 3
el se i f $emp.education = "secondary" t hen $emp.overtime>
233 23 3 7)
avg((emp wher e education="secondary").overtime)
1 3 3 3 3
el se $emp.overtime>
23 3
avg((emp wher e education="higher").overtime)
1 3 3 3 3

The general idea of the method is to constructitalde conditional statement
(if-then-els¢. The conditions of the statement are based on etih@merators
occurring in a given enumerated type. Is the alti@amsformation advantageous for
performance? The previously considered weakly dégrensubquery (5) has been
replaced by the three independent subqueriesidg vocational®),
wdq"secondary"), andwdq"higher"). Indeed, all three subqueries of (7) are
independent from the firavhere operator. None of their names is bound in the
second stack section which is determined by thetadpr.

After applying the independent subquery method f8,to (7) it takes the form (8).

(wds("higher") as $aux3,

wds("secondary") as $aux2,

wds("vocational") as $auxl).

(emp as $emp where (8)
i f $emp.education = "vocational" t hen $emp.overtime>$auxl

el se i f $emp.education = "secondary" t hen $emp.overtime>$aux2

el se $emp.overtime>$aux3)

In (8) the weakly dependent subquery is evaluatdyltbree times. The query
(8) terminates optimization actions - no furtheansformations are possible by
using the above methods. In consequence the g8emyil{ be converted into its
XQuery counterpart:

| et aux3:=
avg(doc("company.xml")//emp[education="higher"])/o vertime)
| et $aux2:=
avg(doc("company.xml")//emp[education="secondary"]J/overtime)
| et $auxl:=
avg(doc("company.xml")//femp[education="vocational "l/overtime) 9)
for $emp i n doc("company.xml")//emp
wher e i f ($emp/education="vocational") t hen $emp/overtime> $auxl
el se i f ($emp/education="secondary") t hen $emp/overtime> $aux2

el se $emp/overtime> $aux3
r et urn $emp

4. More general case

The examples in Chapter 3 presented only spefe of our transformation.
The subquery (5) was weakly dependent from the neastrnal operator. In
general, however, the dependency of a subquerpeaonsidered towards internal
operators. The query (10) presents such a case.

for $dept i n doc("company.xml")//dept

wher e every $emp i n $dept/employs/emp sati sfies $emp/salary >
avg(doc("company.xml")//emp[gender=$emp/gender]/sal ary)

r et ur n $dept

(10)

The query (10) retrieves departments which eachl@mp has the salary
greater than the average salary calculated fagmafiloyees having his/her gender.
The SBQL equivalent of the query (10) has the f¢t):

dept as $dept wher e ($dept.employs.emp as $emp 0O $emp.salary>
1 2 23 3 33 3 34 4 (11)
avg((emp where gender=$emp.gender).salary))

1 4 4 355 4 4

Consider the following subquery of (11):
avg((emp wher e gender=$emp.gender).salary) (12)

The subquery (12) is weakly dependent only from dqentifier operator
because it involves the narfiemp(in the expressiofiemp.gendgrthat is bound in
the scope opened by this operator &edhp.gendeis typed by the enumeration.
According to our rewriting rule [5,6] the propernehtional statement is put
directly after the operator on which (12) depends:

(dept as $dept) wher e (($dept . employs . emp as $emp)
1 2 23 3 33
O(if ($emp.gender="male") t hen
3 34 4 (13)
($emp . salary>avg((emp wher e gender="male").salary))
34 4 1 4 4 4 4

el se ($emp.salary>avg((emp wher e gender="female").salary))))
34 4 1 4 4 4 4

The query (13) illustrates the general rule of$farming a weakly dependent
subquery. The rule can be applied both to extemnal internal operators. As a
result of our rewriting the query (13) contains tsudbqueries

avg((emp wher e gender="male").salary) (14)
avg((emp wher e gender="female").salary) (15)
which are independent both from the quantifier frach the firstwhereoperator.

Denote (14) bywdq"male") and (15) bywdq“female"). After applying the
independent subquery method [8, 14], the query s the following form:

(wds("female") as $auxl, wds("'male") as $aux2).
((dept as $dept) wher e (($dept.employs.emp as $emp) 0O (16)
(if ($emp.gender="male") t hen ($emp.salary>$aux2)

el se ($emp.salary>$aux1l)))

10

After converting (16) to the proper XQuery expreasi takes the form (17):

| et $aux2:=avg(doc("company.xml")//emp[gender="male"]/ salary)
| et $auxl:=
avg(doc("company.xml")//emp[gender="female"]/sala ry)
for $dept i n doc("company.xml")//dept (17)
where every $emp i n $dept/employs/emp satisfies
i f ($emp/gender="male") t hen $emp/salary > $aux2
el se $emp/salary > $auxl
ret urn $dept

5. Rewriting rule

The rewriting rule for queries involving weakly daqlent subqueries can be
formulated as follows. Leg be an XQuery expression of the form (18):
for $i i n doc(uri)//q 1

where q , (18)
return$i

whereq, has the fornt, = a°wdq$i/g;)°f; o andf are some parts af, (maybe
empty),® is a concatenation of stringsdq$i/qs) is aweakly dependent subquery
whose parthi/gs depends on the parent query only and is of thenerated type
ET={e,e,....8}. Then the expression (18) is transformed into fbkowing
SBQL query:

gq; as $i whereq ' (19)

where qy'= o'°wdg$i.gz)°f'is an SBQL equivalent of,. The query (19) is
rewritten to the form (20) according to the rulegegnted in [5, 6].

g, as $i where if($i.g sz=e;) then o °wds(e ;)" °p'
el se if($i.g s=e,) then o °wds(e) °p'
el se if($i.g s=ez) then o °wds(e 3)' °p' (20)
else if($i.g s=e,.) then o °wds(e ;) °p'
el se o °wds(e) °p'

After applying the independent subquery method {&4P0) it takes the form (21):

(wds(e 1)' group as $aux i, wds(e ,)' group as $auxs,...,
wds(e ,)' group as $aux,).
(giwhere if($i.g z=e;) then o °$aux,°p'
el se if($i.g 3=e,) then o °$aux,°p'
else if($i.g z=e3) then o °$auxs°p’ (21)
else if($i.g s=e,.) then o °$aux,.°p'
el se o °$aux ,°p’

11

The query (21) is converted into the following X@uexpression:

| et $aux ; :=wds(e ;)
| et $aux , :=wds(e)

| et $aux ,:=wds(e ,)
for $i i n doc(uri)//q 1
where if($i/g s;=e;) then o°$aux,°p
else if($ilg z=e,) then o°$aux,°p (22)
el se if($ilg 3=e3) then o°$auxs°p

el se if($ilg s=e,1) then o°$aux,.;°p
el se o°$aux,°p
r et ur n$i

6. Conclusions

We have adopted the optimization techniques usedSBQL to XQuery
expressions. The approach consists in transforamQuery expression into its
SBQL equivalent. The result of this operation ixtnewritten according to the
predefined rule. Finally, the optimized SBQL que&syconverted into an XQuery
expression. The proposed optimization method waediat limiting the number
of processing of a weakly dependent subquery tatimber of enumerators of the
enumerated type that the subquery depends on.

In the future we are going to express semantics@dery in terms of SBA.
It allows to avoid converting XQuery expressionfitsBQL ones. The SBQL
semantics is based on three data structures: actaipre, an environment stack,
and a query result stack. It respects several iptex such as total internal
identification, orthogonal persistence, and contpmsility. These features much
simplify developing query optimization methods. Rbis reason it is worth to
apply concepts related to the Stack-Based Approfeh defining XQuery
semantics.

REFERENCES

[1] loannidisY. E. (1996Query OptimizationComputing Surveys, 28(1), pp. 121-123

[2] Jarke M., Koch J. (1984)uery Optimization in Database Syste A€M Computing
Surveys 16(2), pp. 111-152

[3] Kowalski T. et al. (2009pptimization of Indices in ODRARroc. 1st ICOODB Conf.,
pp. 97-118, Germany

12

[4]
[5]

[6]
[7]
(8]
[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]
[17]

[18]
[19]

[20]

Cybula P., Subieta K. (201®@uery Optimization by Result Caching in the Stack-
Based ApproacHCOQODB pp. 40-54

Bleja M., Kowalski T., Adamus R., Subieta K. (200@ptimization of Object-
Oriented Queries Involving Weakly Dependent SuliggeProc. 2nd 1ICOODB
Conf., pp. 77-94, Switzerland

Bleja M., Stencel K., Subieta K. (2009)ptimization of object-oriented queries
addressing large and small collectionMCSIT, pp. 643-650

Drozd M., Bleja M., Stencel K., Subieta K. (201@ptimization of Object-Oriented
Queries through Pushing Selectiod®BIS (2) pp. 57-68

Plodzien J., Kraken A. (2000)Object Query Optimization through Detecting
Independent Subqueridaformation Systems 25(8), pp. 467-490

AdamusR. et al. (200&)verview of the Project ODRARroc. 1st ICOODB Conf., pp.
179-197, Germany

Lentner M., Subieta K. (2007ODRA: A Next Generation Object-Oriented
Environment for Rapid Database Application DeveleptnProc. 11th ADBIS Conf.,
Springer LNCS 4690, pp. 130-140

ODRA (Object Database for Rapid Application Devetept) Description and
Programmer Manua(2008), http://www.sbqgl.Pl/various/ODRA/ODRA_mahbhéml

eGov Bus: Advanced e-Government Information SeBi£2009), European
Commission 6th Framework Programme, IST- 2672 p;ttww.egov-
bus.org/web/guest/home

AdamusR. et al. (2008tack-Based Architecture and Stack-Based Query uayeg
Proc. 1st ICOODB Conf., pp.77-95, Berlin

Subieta K. (2005Yheory and construction of object query languadsditors of the
Polish-Japanese Institute of Information Techno|&§2 pages (in Polish)
Extensible Markup Language (XML) XFifth Edition)(2008)
http://www.w3.0rg/TR/2008/REC-xmlI-20081126/

BrundageMXQuery: The XML Query Langua@®04), Addison-Wesley, 505 pages

XQuery 1.0: An XML Query Langua¢econd Edition(2010)
http://www.w3.org/TR/xquery/

XML Path LanguagéXPath) 2.0(Second Edition(2010)
http://www.w3.0rg/TR/xpath20/

Plodzier J., Subieta K. (2001)ptatic Analysis of Queries as a Tool for Static
Optimization Proc. IDEAS Conf., IEEE Computer Society, pp.-1P2

Stencel K. (2006%emi-strong Type Checking in Database Programmamglages
Editors of the Polish-Japanese Institute of Infdfoma Technology, 207 pages
(in Polish)

13

