PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The methodology of design of axial clearances compensation unit in hydraulic satellite displacement machine and their experimental verification

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new methodology of calculating the dimensions of the axial clearance compensation unit in the hydraulic satellite displacement machine is described in this paper. The methods of shaping the compensation unit were also proposed and described. These methods were used to calculate the geometrical dimensions of the compensation field in an innovative prototype of a satellite hydraulic motor. This motor is characterized by the fact that the body rotates. In other words, the planet (an inner element of the working mechanism) is stationary and the curvature (an external element of the working mechanism) is rotating. The inflow and outflow ports are located in the motor pin which replaces its shaft. The results of the analytical calculation of the compensation field geometrical dimensions were used in FEM calculations of the compensation plate deformation. The correctness of the design of axial clearance compensation unit has been verified experimentally. The experimental method consists in measuring leaks in the gaps of the working mechanism and measuring the torque at low constant speed of the motor case. The results of experimental test are also described in this paper. This way, it has been proven that the proposed new analytical methodology for the design of the axial clearance compensation unit in the hydraulic satellite displacement machine is correct.
Rocznik
Strony
1163--1182
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Polandechanical Engineering, Poland
Bibliografia
  • [1] C. Dymarski, P. Dymarski, Developing methodology for model tests of floating platforms in low-depth towing tank, Archives of Civil and Mechanical Engineering 1 (2016), http://dx.doi. org/10.1016/j.acme.2015.07.003.
  • [2] A. Guzowski, A. Sobczyk, Reconstruction of hydrostatic drive and control system dedicated for small mobile platform, in: Proc. American Society of Mechanical Engineers, Control of Fluid Power Systems Conf., 2014, http://dx.doi.org/10.1115/ FPNI2014-7862.
  • [3] P. Walczak, A. Sobczyk, Simulation of water hydraulic control system of francis turbine, in: Proc. American Society of Mechanical Engineers. Coupled Simulation in Mechanical Machines Conf., 2014, https://doi.org/10.1115/FPNI2014-7814.
  • [4] J. Pobedza, A. Sobczyk, Properties of high pressure water hydraulic components with modern coatings, in: Materials Engineering and Technology, Advanced Materials Research, vol. 849, Trans Tech Publications Ltd., 2014, https://doi.org/ 10.4028/www.scientific.net/AMR.849.100.
  • [5] J. Pobedza, A. Sobczyk, Modern coating used in high pressure water hydraulic components, Advanced Materials in Machine Design, Key Engineering Materials 542 (2013), https://doi.org/ 10.4028/www.scientific.net/KEM.542.143.
  • [6] K. Elgert, A. Balawender, The way of reducing the volumetric losses in hydraulic motors, in: Proc. 2nd International Scientific Forum Developments in Fluid Power Control of Machinery and Manipulators. Fluid Power Net. Int. Cracow University of Technology, 2000.
  • [7] P. Sliwinski, The influence of water and mineral oil on volumetric losses in hydraulic motor, Polish Maritime Research 24 (S1 (93)) (2017), http://dx.doi.org/10.1515/pomr- 2017-0041.
  • [8] K. Elgert, Research of Axial Clearance Compensation in Hydraulic Satellite Motors, (Ph.D. Thesis), Gdansk University of Technology, 2010.
  • [9] P. Osinski, G. Chruscielski, Strength calculations of an element compensating circumferential backlash in the external gear pump, Journal of Theoretical and Applied Mechanics 1 (54) (2016), http://dx.doi.org/10.15632/jtam- pl.54.1.251.
  • [10] G. Pahl, W. Beitz, J. Feldhusen, K. Grote, Engineering Design. A Systematic Approach, 3rd edition, Springer-Verlag, London, 2007, http://dx.doi.org/10.1007/978-1-84628-319-2.
  • [11] D.F. Moore, Viscoelastic Machine Elements, Chapter: Design Methodology, Elsevier, 1993, http://dx.doi.org/10.1016/C2009- 0-24354-6.
  • [12] P. Stryczek, M. Banas, F. Przystupa, Design and research on a hydraulic cylinder with plastic components, in: Conference: 9th FPNI Ph.D. Symposium on Fluid Power. Paper No. FPNI2016-1508, Florianópolis, SC, Brazil, October 26–28, 2016, http://dx.doi.org/10.1115/FPNI2016-1508.
  • [13] J. Stryczek, S. Bednarczyk, K. Biernacki, Strength analysis of the polyoxymethylene cycloidal gears of the gerotor pump, Archives of Civil and Mechanical Engineering 14 (4) (2014), http://dx.doi.org/10.1016/j.acme.2013.12.005.
  • [14] Y. Liu, Y. Deng, M. Fang, D. Li, D. Wu, Research on the torque characteristics of a seawater hydraulic axial piston motor in deep-sea environment, Ocean Engineering 146 (2017), http:// dx.doi.org/10.1016/j.oceaneng.2017.10.004.
  • [15] V. Sahoo, D. Roy, R. Maiti, Analysis of leakage flow through the flank contacts in transition zone in involute external toothed gear pump, in: ASME/BATH 2017 Symposium on Fluid Power and Motion Control, Paper No. FPMC2017-4287, 2017, http://dx.doi.org/10.1115/ FPMC2017-4287.
  • [16] P. Osinski, A. Deptula, M. Partyka, Discrete optimization of a gear pump after tooth root undercutting by means of multi- valued logic trees, Archives of Civil and Mechanical Engineering 4 (13) (2013), http://dx.doi.org/10.1016/j. acme.2013.05.001.
  • [17] T. Zloto, Simulation of the hydrostatic load of the valve plate-cylinder block system in an axial piston pump, Procedia Engineering 177 (2017), http://dx.doi.org/10.1016/j. proeng.2017.02.196.
  • [18] T. Zloto, A. Nagorka, An efficient FEM for pressure analysis of oil film in a piston pump, Applied Mathematics and Mechanics 1 (30) (2009), http://dx.doi.org/10.1007/s10483- 009-0106.
  • [19] M. Stosiak, The modeling of hydraulic distributor slide– sleeve interaction, Archives of Civil and Mechanical Engineering 2 (12) (2012), http://dx.doi.org/10.1016/j. acme.2012.04.002.
  • [20] R. Jasinski, Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part V). Methods ensuring correct start-up of hydraulic components of ship's onboard devices in low ambient temperatures, Polish Maritime Research 4 (96) (2017), http://dx.doi.org/10.1515/pomr-2017-0135.
  • [21] R. Jasinski, Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part IV). Modelling the heating process and determining the serviceability of hydraulic components during the starting-up in low ambient temperature, Polish Maritime Research 3 (95) (2017), http://dx.doi.org/10.1515/ pomr-2017-0089.
  • [22] S. Bednarczyk, Volumetric Losses in Orbital Pump and the Vay of Limiting Them, (Ph.D. Thesis), Wroclaw University of Technology, 1999.
  • [23] W. Kollek, Modelling and Design of Gear Pumps, Wroclaw University Publishing House, 2009.
  • [24] K. Elgert, Satellite hydraulic motor with axial clearance compensation, in: Proc. 2nd International PhD Symposium on Fluid Power, Modena, Italy, 2002.
  • [25] P. Sliwinski, The basics of design and experimental tests of the commutation unit of a hydraulic satellite motor, Archives of Civil and Mechanical Engineering 4 (16) (2016), http://dx. doi.org/10.1016/j.acme.2016.04.003.
  • [26] P. Sliwinski, Satellite Displacement Machines. Basic of Design and Analysis of Power Loss, Gdansk University of Technology Publishers, 2016.
  • [27] P. Sliwinski, P. Patrosz, European Patent Application 15003680.4/EP15003680, Hydraulic Positive Displacement Machine, 29.12.2015.
  • [28] P. Sliwinski, P. Patrosz, Substantive Report on the Implementation of the Contract: ‘‘Conducting Research in the Field of Innovative Satellite Motors with Reverse Kinematics’’ for FAMA Ltd. Company in Gniew, Gdansk University of Technology, 2015.
  • [29] P. Patrosz, Deformation in the Axial Clearance Compensation Unit in the Satellite Pump Unit, Hydraulika i Pneumatyka 1, Poland, 2014.
  • [30] M. Stosiak, W. Kollek, P. Osinski, P. Cichon, A. Wilczynski, Problems relating to high-pressure gear micropumps, Archives of Civil and Mechanical Engineering 1 (14) (2014), http://dx.doi.org/10.1016/j.acme.2013.03.005.
  • [31] P. Sliwinski, Flow of liquid in flat gaps of satellite motors working mechanism, Polish Maritime Research 2 (82) (2014), http://dx.doi.org/10.2478/pomr-2014-0019.
  • [32] P. Sliwinski, P. Patrosz, Patent PL218888, Satellite Operating Mechanism of the Hydraulic Displacement Machine, 27.02.2015.
  • [33] P. Sliwinski, Patent PL219147, Axial Play Compensation System in the Satellite Hydraulic Displacement Machine, 31.03.2015.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20c7a92e-3ed8-424d-a0e8-8a5eb1415378
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.