Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Designing 3D models of drying chambers, especially of a new type, is a long and complex process. Nevertheless, the availability of 3D models of drying chambers allows for the necessary research before their actual design. In this paper, a software for the automated design of a 3D model of a drying chamber was developed to save time and material resources. To simulate the drying process of hygroscopic materials in this 3D model, an asynchronous cellular automaton model was developed. The software is the result of the programming implementation of several algorithms, including: an algorithm for automated design of a 3D model of a drying chamber using SolidWorks API tools; an algorithm for representing the 3D model under study as a cellular automaton field; an algorithm for calculating input data for simulation; an algorithm that uses transition rules for the asynchronous cellular automaton model; an algorithm for saving and displaying simulation results; and an algorithm for comparing simulation results. The software was verified and the mathematical models were validated using experimental data. The input data for the simulation were obtained from real technological conditions implemented in real drying chambers. The modeling results were used to obtain graphical dependencies of the desired material and drying agent parameters over time. The analysis of the results included their comparison with the data obtained by sensors in a real drying chamber. The relative error was determined, the average values of which did not exceed 13%, which confirms the accuracy of the results. In the long-term, the developed software has the potential to become a valuable tool in the design of new and more efficient drying chambers, offering opportunities for designing, modeling, and analyzing research results.
Czasopismo
Rocznik
Tom
Strony
82--93
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Department of Computer-Aided Design Systems, Lviv Polytechnic National University, 79058, Ukraine, Lviv, str. Mytropolyta Andreya, 3
autor
- Department of Computer Science, Ukrainian National Forestry University, 79058, Ukraine, Lviv, str. Gen. Chuprynky, 103
Bibliografia
- 1. Sokolovskyy Y, Sinkevych O, Shymanskyi V, Boretska I, Samotii T. Construction of an asynchronous cell-automatic model for investigating the thermal mass transfer process. 2021 IEEE XVIIth Int Conf Perspect Technol Methods MEMS Des MEMSTECH 2021. 2021;29-33. Available from: https://doi.org/10.1109/MEMSTECH53091.2021.9467930
- 2. Mende FF, Shurupov IA. Simple camera for high-quality wood drying. Eng Technol. 2015;2(3):95-117.
- 3. Zhao J, Cai Y. A comprehensive mathematical model of heat and moisture transfer for wood convective drying. Holzforschung. 2017;71(5):425-35. Available from: https://doi.org/10.1515/hf-2016-0148.
- 4. Kadem S, Lachemet A, Younsi R, Kocaefe D. 3D-transient modeling of heat and mass transfer during heat treatment of wood. Int Com-mun Heat Mass Transf. 2011;38(6):717-22. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2011.03.026
- 5. Ovsiak OV, Dendiuk MV. Mathematical modeling of moisture trans-fer in wood drying for the two-dimensional case. Sci Bull UNFU. 2023;33(4):59-64. Available from: https://doi.org/10.36930/40330408.
- 6. Shumylyak L, Zhikharevych V, Ostapov S. Study of the method of asynchronous cellular automata when applied to heat conduction problems. Inf Process Syst. 2018;1(152):74-9. Available from: https://doi.org/10.30748/soi.2018.152.11
- 7. Boichot R, Luo L, Fan Y. Tree-network structure generation for heat conduction by cellular automaton. Energy Convers Manag. 2009;50(2): 376-86. Available from: https://doi.org/10.1016/j.enconman.2008.09.003.
- 8. Sokolovskyy Y, Sinkevych O. Software for automatic calculation and construction of chamber drying wood and its components. XII Int Conf Perspect Technol Methods MEMS Des MEMSTECH. 2016;209-13. Available from: https://doi.org/10.1109/MEMSTECH.2016.7507544
- 9. Chopard B, Droz M. Cellular automata modeling of physical sys-tems. Cambridge: Cambridge University Press; 1998. Available from: https://doi.org/10.1017/CBO9780511549755
- 10. Zhang J, Miao P, Zhong D, Liu L. Mathematical modeling of drying of Masson pine lumber and its asymmetrical moisture con-tent profile. Holzforschung. 2014;68(3):313-21. Available from: https://doi.org/10.1515/hf-2013-0077
- 11. Ravshanov N, Shadmanov I, Kubyashev K, Khikmatullaev S. Math-ematical modeling and research of heat and moisture transfer pro-cesses in porous media. E3S Web Conf. 2021;264:01038. Available from: https://doi.org/10.1051/e3sconf/202126401038
- 12. Plumb OA, Spolek GA, Olmstead BA. Heat and mass transfer in wood during drying. Int J Heat Mass Transf. 1985;28(9):1669-78. Available from: https://doi.org/10.1016/0017-9310(85)90141-3
- 13. Mnasri F, Abahri K, El GM, Bennacer R, Gabsi S. Numerical analy-sis of heat, air, and moisture transfers in a wooden building materi-al. Therm Sci. 2017;21(2):785-95. Available from: https://doi.org/10.2298/TSCI160421248M
- 14. Ovsiak OV, Dendiuk MV. Using cellular automata to simulate external heat and mass transfer in the wood drying process. Sci Bull UNFU. 2023;33(5):63-9. Available from: https://doi.org/10.36930/40330508.
- 15. Hirnyk LM, et al. Mathematical modeling of convective drying pro-cesses. Budivelnyk. 1993. [In Ukrainian].
- 16. Hirnyk LM, et al. Automation of wood drying processes in the con-struction industry. Budivelnyk. 1992. [In Ukrainian].
- 17. Sokolovskyy Y, Sinkevych O. Calculation of the drying agent in drying chambers. 2017 14th Int Conf Exp Des Appl CAD Syst Mi-croelectron CADSM 2017. 2017;27-31. Available from: https://doi.org/10.1109/CADSM.2017.7916077
- 18. Ilachinski A. Cellular automata: a discrete universe. Singapore: World Scientific; 2001. Available from: https://doi.org/10.1142/4702
- 19. Sokolovskyy Y, Sinkevych O. Study of heat and mass transfer into biomaterials by using asynchronous cellular automata. 16th Int Conf Comput Sci Inf Technol CSIT 2021. 2021;274-7. Available from: https://doi.org/10.1109/CSIT52700.2021.9648826
- 20. Nearing TY, Peters-Lidard GS, Harrison CD, Tang L. Performance metrics, error modeling, and uncertainty quantification. Mon Weather Rev. 2016;144(2):607-13. Available from: https://doi.org/10.1175/MWR-D-15-0087.1
- 21. Li G, Li Y, Chen Q. CAD/CAE system for wooden package based on SolidWorks. Appl Mech Mater. 2012;(200):487-91.
- 22. Kyratsis P, Tzotzis A, Manavis A. Computational design and digital fabrication. Adv Manuf Syst. 2021;1-16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20c19630-be6e-4a8c-a9ef-d7cf24a68e8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.