PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Noctiluca blooms intensify when northwesterly winds complement northeasterlies in the northern Arabian Sea: Possible implications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wind systems are known as nutrient sources playing significant roles in the oceanic realm and global climate oscillations. This study explores, for the first time, the effect of winds on the winter blooms of the mixotrophic dinoflagellate, the green variant of Noctiluca scintillans (NSG) in the northern Arabian Sea. When the NSG abundance was lower (i.e., <∼10000 cells l−1), it was coupled to silicic acid (H4SiO4), on which diatoms (phytoplankton) in turn depended. At higher abundance (i.e., NSG>∼10000 cells l−1), H4SiO4 and H4SiO4:DIN (dissolved inorganic nitrogen) ratio fell. The NSG was then intensely green and chlorophyll-a richer, attributed to a change in the mode of NSG's nutrition from heterotrophy to autotrophy-dominance. The back-trajectory model revealed that the winds were mostly northeasterly (NE) initially (during February) and were north-westerly (NW) towards the end of winter (March). Separately for the NE and NW winds, the NSG abundance was 10655±18628 and 28896±46225 cells l−1, respectively. The H4SiO4:DIN ratio correspondingly reached <0.2 and ≥0.4. The NSG was modelled with high significance (p<0.001, N=33) versus the NE and NW wind speeds. Thus, while the NE winds deepened the mixed layer and caused nutrient enrichment and phytoplankton production, the NW winds facilitated the recovery of the H4SiO4:DIN ratio and economical use of H4SiO4 for phytoplankton production. It is hypothesized that this process is helped by iron input from NW desert winds during the latter part of winter when the NSG blooms intensify.
Czasopismo
Rocznik
Strony
717--734
Opis fizyczny
Bibliogr. 77 poz., map., rys., tab., wykr.
Twórcy
  • Marine Chemistry Laboratory, Andhra University, Visakhapatnam, India
  • Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, India
  • National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Govt. of India, Vasco-da-Gama, Goa, India
  • Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, India
  • Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, India
Bibliografia
  • 1. Baker, A.R., Jickells, T.D., 2006. Mineral particle size as a control on aerosol iron solubility. Geophys. Res. Lett. 33, L17608.
  • 2. Balachandran, K.K., Laluraj, C.M., Jyothibabu, R., Madhu, N.V., Muraleedharan, K.R., Vijay, J.G., Maheswaran, P.A., Ashraff, T.T.M., Nair, K.K.C., Achuthankutty, C.T., 2008. Hydrography and biogeochemistry of the north western Bay of Bengal and the north eastern Arabian Sea during winter monsoon. J. Mar. Syst. 73, 76-86.
  • 3. Baliarsingh, S.K., Lotliker, A.A., Sudheesh, V., Samanta, A., Das, S., Vijayan, A.K., 2018. Response of phytoplankton community and size classes to green Noctiluca bloom in the northern Arabian Sea. Mar. Pollut. Bull. 129 (1), 222-230.
  • 4. Bi, R., Cao, Z., Ismar-Rebitz, S., Sommer, U., Zhang, H., Ding, Y., Zhao, M., 2021. Responses of Marine Diatom-Dinoflagellate Competition to Multiple Environmental Drivers: Abundance, Elemental and Biochemical Aspects. Front. Microbiol. 12, 731786.
  • 5. Bikkina, P., Sarma, V.V.S.S., Kawamura, K., Bikkina, S., Kunwar, B., Sherin, C.K., 2020. Chemical characterization of wintertime aerosols over the Arabian Sea: Impact of marine sources and long-range transport. Atmos. Environ. 239, 117749.
  • 6. Boyd, P.W., Mackie, D.S., Hunter, K.A., 2010. Aerosol iron deposition to the surface ocean—Modes of iron supply and biological responses. Mar. Chem. 120 (1), 128-143.
  • 7. Burgay, F., Spolaor, A., Gabrieli, J., Cozzi, G., Turetta, C., Vallelonga, P., Barbante, C., 2021. Atmospheric iron supply and marine productivity in the glacial North Pacific Ocean. Clim. Past. 17, 491-505.
  • 8. Chaichitehrani, C., Mohammad, N.A., 2018. Overview of wind climatology for the Gulf of Oman and the Northern Arabian Sea. Am. J. Fluid Dyn. 8 (1), 1-9.
  • 9. Chappell, P.D., Moffett, J.W., Hynes, A.M., Webb, E.A., 2012. Molecular evidence of iron limitation and availability in the global diazotroph Trichodesmium. ISME J 6, 1728-1739.
  • 10. Duce, R.A., LaRoche, J., Alteieri, K., Arrigo, K.R., Baker, A.R., Capone, D.G., et al., 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893-897.
  • 11. Dwivedi, R.M., Chauhan, R., Solanki, H.U., Raman, M., Matondkar, S.G.P., Madhu, V.R., Meenakumari, B., 2012. Study of ecological consequence of the bloom (Noctiluca miliaris) in off-shore waters of the Northern Arabian Sea. Indian J. Geo-Mar. Sci. 41 (4), 304-313.
  • 12. Dwivedi, R.M., Raman, M., Parab, S., Matondkar, S.G.P., Nayak, S., 2006. Influence of northeasterly trade winds on intensity of winter bloom in the Northern Arabian Sea. Curr. Sci. 90 (10), 1397-1406.
  • 13. Escudero, M., Stein, A.F., Draxler, R.R., Querol, X., Alastuey, A., Castillo, S., Avila, A., 2011. Source apportionment for African dust outbreaks over the Western Mediterranean using the HYS-PLIT model. Atmos. Res. 99, 518-527.
  • 14. Fitch, D.T., Moore, J.K., 2007. Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice Zone. J. Geophys. Res. 112, C08006.
  • 15. Goes, J.I., Tian, H., Gomes, H.d.R., et al., 2020. Ecosystem state change in the Arabian Sea fueled by the recent loss of snow over the Himalayan-Tibetan Plateau region. Sci. Rep. 10, 7422.
  • 16. Gomes, H.d.R., McKee, K., Mile, A., Thandapu, S., Al-Hashmi, K., Jiang, X., Goes, J.I., 2018. Influence of light availability and prey type on the growth and photo-physiological rates of the mixotroph Noctiluca scintillans. Frontiers Mar. Sci. 5.
  • 17. Gomes, H.d.R., Goes, J.I., Matondkar, S.G.P., Buskey, E.J., Basu, S., Parab, S., Prasad, T.G., 2014. Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nat. Commun. 5, 4862.
  • 18. Grasshoff, K., Kremling, K., Ehrhardt, M., 1999. Methods of seawater analysis. Verlag Chemie, Weinheim, 632 pp.
  • Guieu, C., Muchamad, A., Olivier, A., Nathalie, B., Marina, L., Christian, E., Zouhair, L., 2019. Major impact of dust deposition on the productivity of the Arabian Sea. Geophys. Res. Letts. 46.
  • 19. Guo, C., Yu, J., Ho, T.-Y., Wang, L., Song, S., Kong, L., Liu, H., 2012. Dynamics of phytoplankton community structure in the South China Sea in response to the. East Asian aerosol input Biogeosci. 9, 1519-1536.
  • 20. Harrison, P., Piontkovski, S., Al-Hashmi, K., 2019. Overview of decadal ecosystem changes in the western Arabian Sea and the occurrence of Algal blooms. J. Agri. Mar. Sci. 23 (1), 11.
  • 21. Harrison, P.J., Furuya, K., Glibert, P.M., Xu, J., Liu, H.B., Yin, K.,Lee, J.H.W., Anderson, D.M., Gowen, R., Al-Azri, A.R, Ho, A., 2011. Geographical distribution of red and green Noctiluca scintillans. Chin. J. Oceanol. Limnol. 29, 807-831.
  • 22. Herman, J.R., Bhartia, P.K., Torres, O., Hsu, C., Seftor, C., Celarier, E., 1997. Global distribution of UV-absorbing aerosols from Nimbus7/TOMS data. J. Geophys. Res. 102 (D14), 16911-16922.
  • 23. Hutchins, D.A., Bruland, K.W., 1998. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 93, 561-564.
  • 24. Kiorboe, T., Titelman, J., 1998. Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans. J. Plankton Res. 20 (8), 1615-1636.
  • 25. Koné, V., Aumont, O., Lévy, M., Resplandy, L., 2009. Physical and Biogeochemical Controls of the Phytoplankton Seasonal Cycle in the Indian Ocean: A Modeling Study. Indian Ocean Biogeochemical Processes and Ecological Variability Geophysical Monograph Series 185. Am. Geophys. Union.
  • 26. Kumar, A., Suresh, K., Rahaman, W., 2020. Geochemical characterization of modern aeolian dust over the Northeastern Arabian Sea: Implication for dust transport in the Arabian Sea. Sci. Total Environ. 729, 138576.
  • 27. Kumar, P.K, Singh, A., Ramesh, R., Nallathambi, T., 2017. N2 Fixation in the Eastern Arabian Sea: Probable Role of Heterotrophic Diazotrophs. Front Mar. Sci. 4. Kumar, S.P., Narvekar, J., 2005. Seasonal variability of the mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity. Deep Sea Res. Pt. II 52 (14—15), 1848-1861.
  • 28. Kustka, A.B., Sanudo-Wilhelmy, S.A., Carpenter, E.J., Capone, D., Burns, J., Sunda, W.G., 2003. Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS 101): comparison with nitrogen fixation rates and iron: carbon ratios of field populations. Limnol. Oceanogr. 48, 1869-1884.
  • 29. Lakshmi, R.S., Prakash, S., Lotliker, A.A., Baliarsingh, S.K., Samanta, A., Mathew, T., Chaterjee, A., Sahu, B.K., Nair, T.M., 2021. Physicochemical controls on the initiation of phytoplankton bloom during the winter monsoon in the Arabian Sea. Scientific Reports 11, 13448.
  • 30. Lotliker, A.A., Baliarsingh, S.K., Trainer, V.L., Wells, M.L., Wilson, C., Bhaskar, T.U., Samanta, A., Shahimol, S.R., 2018. Characterization of oceanic Noctiluca blooms not associated with hypoxia in the northeastern Arabian Sea. Harmful Algae 74, 46-57.
  • 31. Madhu, N.V., Jyothibabu, R., Maheswaran, P.A., Jayaraj, K.A., Achuthankutty, C.T., 2012. Enhanced chlorophyll-a and primary production in the northern Arabian Sea during the spring inter—monsoon due to green Noctiluca scintillans bloom. Mar. Biol. Res. 8 (2), 182-188.
  • 32. Madhupratap, M., Kumar, S.P., Bhattathiri, P.M.A., Kumar, M.D., Raghukumar, S., Nair, K.K.C., Ramaiah, N., 1996. Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature 384, 549-552.
  • 33. Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D., Hesse, P.P., Balkanski, Y., 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci. Rev. 99 (1—2), 61-97.
  • 34. Mills, M.M., Ridame, C., Davey, M., La Roche, J., Geider, R.J., 2004. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292-294.
  • 35. Miyaguchi, H., Fujiki, T., Kikuchi, T., Kuwahara, V.S., Toda, T., 2006. Relationship between the bloom of Noctiluca scintillans and en/vironmental factors in the coastal waters of Sagami Bay. Japan. J. Plankton Res. 28 (3), 313-324.
  • 36. Moffett, J.W., Vedamati, J., Goepfert, T.J., Pratihary, A., Gauns, M., Naqvi, S.W.A., 2015. Biogeochemistry of iron in the Arabian Sea. Limnol. Oceanogr. 60 (5), 1671-1688.
  • 37. Moore, C.M., Mills, M.M., Achterberg, E.P., et al., 2009. Large-s-cale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat. Geosci. 2, 867-871.
  • 38. National Oceanographic and Atmospheric Administration (NOAA), 2021. http://cimss.ssec.wisc.edu/clavr/amato/Amato_T_
  • 39. Evan/Arabian_0208.html, “Arabian Sea dust storm AVHRR images”.Naqvi, S.W.A., Moffett, J.W., Gauns, M.U., Narvekar, P.V., Pratihary, A.K., Naik, H., Ahmed, S.I., 2010. The Arabian Sea as a high-nutrient, low-chlorophyll region during the late southwest monsoon. Biogeosciences 7 (7), 2091-2100.
  • 40. Padmakumar, K.B., SreeRenjima, G., Fanimol, C.L., Menon, N.R., Sanjeevan, V.N., 2010. Preponderance of heterotrophic Noctiluca scintillans during a multi-species diatom bloom along the southwest coast of India. Int. J. Oceans Oceanogr. 4 (1), 55-63.
  • 41. Pandi, S.R., Baliarsingh, S.K., Lotliker, A.A., Sarma, N.S., Tripathy, S.C., 2020. Empirical relationships for remote sensing reflectance and Noctiluca scintillans cell density in the northeastern Arabian Sea. Mar. Poll. Bull. 161.
  • 42. Pease, P.P., Tchakerian, V.P., Tindale, N.W., 1998. Aerosols over the Arabian Sea: geochemistry and source areas for aeolian desert dust. J. Arid Environ. 39 (3), 477-496.
  • 43. Piontkovski, S.A., Serikova, I.M., Evstigneev, V.P., Prusova, I.Y., Zagorodnaya, Y.A., Al-Hashmi, K.A., Al-Abri, N.M., 2021. Seasonal blooms of the dinoflagellate algae Noctiluca scintillans: regional and global scale aspects. Reg. Stud. Mar. Sci. 44, 101771.
  • 44. Prakash, S., Roy, R., Lotliker, A., 2017. Revisiting the Noctiluca scintillans paradox in northern Arabian Sea. Curr. Sci. 113 (7), 1429-1434.
  • 45. Prasad, T.G., 2004. A comparison of mixed-layer dynamics between the Arabian Sea and Bay of Bengal: One-dimensional model results. J. Geophys. Res. - Oceans 109 (3), 1-15.
  • 46. Prasanna Kumar, S., Prasad, T.G., 1999. Formation and spreading of Arabian Sea high-salinity water mass. J. Geophys. Res. – Oceans 104 (C1), 1455-1464.
  • 47. Prasanna Kumar, S., Narvekar, J., Kumar, A., Shaji, C., Anand, P., Sabu, P., Rijomon, G., Josia, J., Jayaraj, K.A., Radhika, A., Nair, K.K.C., 2004. Intrusion of the Bay of Bengal water into the Arabian Sea during winter monsoon and associated chemical and biological response. Geophys. Res. Lett. 31, L15304.
  • 48. Rizzolo, J.A., Barbosa, C.G.G., Borillo, G.C., Godoi, A.F.L., Souza, R.A.F., Andreoli, R.V., Manzi, A.O., Sá, M.O., Alves, E.G., Pöhlker, C., Angelis, I.H., Ditas, F., Saturno, J., Moran-Zuloaga, D., Rizzo, L.V., Rosário, N.V., Pauliquevis, T., Santos, R.M.N., Yamamoto, C.I., Andreae, M.O., Artaxo, P., Taylor, P.E., Godoi, R.H.M., 2017. Soluble iron nutrients in Saharan dust over the central Amazon rainforest. Atmos. Chem. Phys. 17, 2673-2687.
  • 49. Rolph, G., Stein, A., Stunder, B., 2017. Real-time environmental applications and display system. READY. Environ. Model. Software 95, 210-228.
  • 50. Rubin, M., Berman-Frank, I., Shaked, Y., 2011. Dust- and mineraliron utilization by the marine dinitrogen-fixer Trichodesmium. Nature Geosci 4, 529-534.
  • 51. Sarma, V.V.S.S., Patil, J.S., Shankar, D., Anil, A.C., 2019. Shallow convective mixing promotes massive Noctiluca scintillans bloom in the northeastern Arabian Sea. Mar. Poll. Bull. 138, 428-436.
  • 52. Shankar, D., Remya, R., Vinayachandran, P.N., Chatterjee, A., Behera, A., 2015. Inhibition of mixed-layer deepening during winter in the northeastern Arabian Sea by the West India Coastal Current. Clim. Dyn. 47, 1049-1072.
  • 53. Sharada, M.K., Kalyani, C.D., Swathi, P.S., 2020. Iron limitation study in the North Indian Ocean using model simulations. J. Earth. Syst. Sci. 129, 93.
  • 54. Shetye, S.R., Gouveia, A.D., Shenoi, S.S.C., Michael, G.S., Sundar, D., Almeida, A.M., Santanam, K., 1991. The coastal current off western India during the northeast monsoon. Deep Sea Res 38 (12), 1517-1529.
  • 55. Shetye, S.R., Gouveia, A.D, Shenoi, S.S.C., 1994. Circulation and water masses of the Arabian Sea. Proc. Indian Acad. Sci. (Earth Planet. Sci.) 103 (2), 107-123.
  • 56. Shetye, S.R., Iyyappan, S., Shankar, D., Sundar, D., Seelam, J., Mehra, P., Desai, R.G.P., Pednekar, P.S., 2008. Observational evidence for remote forcing of the West India Coastal Current. J. Geophys. Res. 113.
  • 57. Shi, D., Xu, Y., Hopkinson, B.M., Morel, F.M.M., 2010. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676-679.
  • 58. Smitha, B.R., Sanjeevan, V.N., Padmakumar, K.B., Hussain, M.S., Salini, T.C., Lix, J.K., 2022. Role of mesoscale eddies in the sustenance of high biological productivity in North Eastern Arabian Sea during the winter-spring transition period. Sci. Total Environ. 809, 151173.
  • 59. Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 96, 2059-2077.
  • 60. Stephanie, L., Hinder, S.L., Hays, G.C., Edwards, M., Roberts, E.C., Walne, A.W., Gravenor, M.B., 2012. Changes in marine dinoflagellate and diatom abundance under climate change. Nature Clim. Change 1-5.
  • 61. Suresh, K., Kumar, A., Ramaswamy, V., Prakash Babu, C., 2021. Sea-sonal variability in aeolian dust deposition fluxes and their mineralogical composition over the Northeastern Arabian Sea. Int. J. Environ. Sci. Technol.
  • 62. Teixeira, H., Berg, T., Uusitalo, L., Fürhaupter, K., Heiskanen, A.-S., Mazik, K., et al., 2016. A catalogue of marine biodiversity indicators. Front. Mar. Sci. 3, 207.
  • 63. Tett, P., Carreira, C., Mills, D.K., Leeuwen, v.S., Foden, J., Bresnan, E., Gowen, R.J., 2008. Use of a phytoplankton community index to assess the health of coastal waters. ICES J. Mar. Sci. 65, 1475-1482.
  • 64. Tian, R., Chen, J., Sun, X., Li, D., Liu, C., Weng, H., 2018. Algae explosive growth mechanism enabling weather-like forecast of harmful algal blooms. Sci. Rep. 8, 9923.
  • 65. Tian, R., Lin, Q., Li, D., Zhang, W., Zhao, X., 2020. Atmospheric transport of nutrients during a harmful algal bloom event. Reg. Stud. Mar. Sci. 34, 101007.
  • 66. Timmermans, K.R., Wagt, B vd, de Baar, H.J.W., 2004. Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnol. Oceanogr. 49 (6), 2141-2151.
  • 67. Tomas, C.R., 1997. Identifying Marine Phytoplankton. Academic Press, USA, 858 pp.
  • 68. Torres, O., Bhartia, P.K, Herman, J.R, Ahmad, Z., Gleason, J., 1998. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J. Geophys. Res. 103, 17,099-17,110.
  • 69. Trapp, J.M., Millero, F.J., Prospero, J.M., 2010. Trends in the solubility of iron in dust-dominated aerosols in the equatorial Atlantic trade winds: Importance of iron speciation and sources. Geochem. Geophys. Geosyst. 11, Q03014.
  • 70. Tsai, S.F., Wu, L.Y., Chou, W.C., Chiang, K.P., 2018. The dynamics of a dominant dinoflagellate, Noctiluca scintillans, in the subtropical coastal waters of the Matsu archipelago. Mar. Poll. Bull. 127, 553-558.
  • 71. Turkoglu, M., 2013. Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the Sea of Marmara (The Dardanelles, Turkey). Oceanologia 55 (3), 709-732.
  • 72. Vikebo, F.B., Strand, K.O., Sundby, S., 2019. Wind intensity is key to phytoplankton spring bloom under climate change. Front. Mar. Sci. 6, 1-9.
  • 73. Wasmund, N., Kownacka, J., Göbel, J., Jaanus, A., Johansen, M., Jurgensone, I., Lehtinen, S., Powilleit, M., 2017. The diatom/dinoflagellate index as an ndicator of ecosystem changes in the Baltic Sea. Principle and handling instruction. Front. Mar. Sci. 4, 22.
  • 74. Whittaker, S., Bidle, K.D., Kustka, A.B., Falkowski, P.G., 2011. Quantification of nitrogenase in Trichodesmium IMS 101: implications for iron limitation of nitrogen fixation in the ocean. Environ. Microbiol. Rep. 3, 54-58
  • 75. Xiang, C., Tan, Y., Zhang, H., Liu, J., Ke, Z., Li, G., 2019. The key to dinoflagellate (Noctiluca scintillans) blooming and outcompeting diatoms in winter off Pakistan, northern Arabian Sea. Sci. Total Environ. 694, 133396.
  • 76. Yu, Y., Notaro, M., Kalashnikova, O.V., Garay, M.J., 2016. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 121, 289-305.
  • 77. Zhang, S., Liu, H., Guo, C., Harrison, P.J., 2016. Differential feeding and growth of Noctiluca scintillans on monospecific and mixed diets. Mar. Ecol. Prog. Ser. 549, 27-40
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20c057b9-edbb-4769-ac05-244823dcb711
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.