PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new software tool for transient thermal analysis based on fast IR camera temperature measurement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new software tool for transient thermal analysis based on thermographic measurement of temperature is presented. In the proposed approach, temperature change after applying or removing power can be measured by a thermal camera or any contact temperature sensor. The software calculates thermal impedance in frequency domain and represents it in the form of the Nyquist plot. In addition, thermal time constant spectrum and cumulative structure function are evaluated. The software was developed in Matlab environment using in-built procedures for transfer function estimation. For the validation of the proposed tool, the results are compared with ones obtained using commercially available software.
Wydawca
Rocznik
Strony
48--51
Opis fizyczny
Bibliogr. 18 poz., wykr., wzory
Twórcy
  • 1 Aristotle University of Thessaloniki, Department of Electrical and Computer Engineering, 54 124 Thessaloniki, Greece
  • Lodz University of Technology, Institute of Electronics, 211/215 Wólczańska St., 90 924 Lodz, Poland
autor
  • Gent University, Department of Electronics and Information Systems, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
  • 1 Aristotle University of Thessaloniki, Department of Electrical and Computer Engineering, 54 124 Thessaloniki, Greece
autor
  • Lodz University of Technology, Institute of Electronics, 211/215 Wólczańska St., 90 924 Lodz, Poland
autor
  • Lodz University of Technology, Institute of Electronics, 211/215 Wólczańska St., 90 924 Lodz, Poland
Bibliografia
  • [1] Kałuża M., Więcek B., De Mey G., Hatzopoulos A., Chatziathanasiou V.: Thermal impedance measurement of integrated inductors on bulk silicon substrate. Microelectronics Reliability, vol. 73, pp. 54-59, 2017.
  • [2] Vermeersch B.: Thermal AC modelling, simulation and experimental analysis of microelectronic structures including nanoscale and high-speed effects. 2009.
  • [3] Szekely V.: On the representation of infinite-length distributed RC oneports. IEEE Trans. Circuits Syst., vol. 38, pp. 711–719, 1991.
  • [4] Marco S., Palcin J. Samitier J.: Improved multiexponential transient spectroscopy by iterative deconvolution, IEEE Trans. In Instrumentation and Measurement, vol. 50, pp. 774-780, 2001.
  • [5] Jibia A.U., Salami M-J: An Appraisal of Gardner Transform-Based Method of Transient Multiexponential Signal Analysis. International Journal of Computer theory and Engineering, vol.4, pp. 16-24, 2012.
  • [6] Hellen E. H.: Pade-Laplace analysis of signal averaged voltage decays obtained from a simple circuit. American Journal of Physics, vol. 73, no.9, Sept. 2005, pp. 871-875.
  • [7] Gorecki K., Zarebski J.: The influence of the selected factors on transient thermal impedance of semiconductor devices. Proceedings of the 21st International Conference Mixed Design of Integrated Circuits and Systems MIXDES, Lublin, pp. 309-314, 2014.
  • [8] Murthy K., Bedford R.: Transformation between Foster and Cauer equivalent networks. IEEE Transactions on Circuits and Systems, vol. 25, no. 4, pp. 238-239, 1978.
  • [9] Chatzipanagiotou P., Chatziathanasiou V., De Mey G., Wiecek B.: Influence of soil humidity on the thermal impedance, time constant and structure function of underground cables: A laboratory experiment. App Therm Engin, vol. 113, pp. 1444–1451, 2017.
  • [10] Chatziathanasiou V., Chatzipanagiotou P., Papagiannopoulos I., De Mey G., Wiecek B.: Dynamic thermal analysis of underground medium power cables using thermal impedance, time constant distribution and structure function. Applied Thermal Engineering, vol. 60, no. 1-2, pp. 256–260, 2013.
  • [11] Russo S.: Measurement and simulation of electrothermal effects in solid-state devices for RF applications. 2010.
  • [12] Protonotarios E.N., Wing O.: Theory of Nonuniform RC Lines, Part I: Analytic Properties and Realizability Conditions in the Frequency Domain. IEEE Transactions on Circuit Theory, vol. 14, no. 1, pp. 2–12, 1967.
  • [13] Szekely V.: Identification of RC networks by deconvolution: Chances and limits. IEEE Trans. Circuits Syst., vol. 45, no. 3, pp. 244–258, 1998.
  • [14] Büttner W.: Ein numerisches Verfahren zur Exponential approximation von transienten Wärmewiderständen. Archiv for Elektrotechnik, vol. 59, no. 6, pp. 351-359, 1977.
  • [15] Górecki K., Rogalska M., Zarębski J.: Parameter estimation of the electrothermal model of the ferromagnetic core. Microelectronics Reliability, Vol. 54, No. 5, pp. 978-984, 2014.
  • [16] Jakopovid Z., Bencic Z., Koncar R.: Identification of Thermal Equivalent - Circuit Parameters for Semiconductors. IEEE Workshop on Computers in Power Electronics, pp. 251-260, 1990.
  • [17] Savitzky A., Golay M. J. E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., vol. 36, pp. 1627–1639, 1964.
  • [18] T3Ster-Master Thermal Evaluation Tool – User’s Manual Version 2.2, Mentor Graphics Corporation.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20bd204e-db9a-4766-8271-3b76ec2f3319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.