PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrically conducting flow through exponential power law fluid with variable thermal conductivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of exponential law of steady, incompressible fluid flow in boundary layer and heat transfer are studied in an electrically conducting fluid over a semi-infinite vertical plate assuming the variable thermal conductivity in the presence of a uniform magnetic field. The governing system of equations including the continuity equation, momentum equation and energy equation have been transformed into nonlinear coupled ordinary differential equations using appropriate similarity variables. All the numerical and graphical solutions are obtained through the use of Maple software. The solutions are found to be dependent on three dimensionless parameters including the magnetic field parameter M, thermal conductivity parameter and Prandtl number Pr. Representative velocity and temperature profiles are presented at various values of the governing parameters. The skin-friction coefficient and the rate of heat transfer are also calculated for different values of the parameters.
Rocznik
Strony
539--548
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
  • Research Group of Fluid Flow Modeling and Simulation Department of Applied Mathematics, University of Dhaka Dhaka-1000, BANGLADESH
  • Research Group of Fluid Flow Modeling and Simulation Department of Applied Mathematics, University of Dhaka Dhaka-1000, BANGLADESH
autor
  • College of Engineering and Science, Louisiana Tech University Ruston, Louisiana, 71272, USA
Bibliografia
  • [1] Soundalgekar V.M. and Takhar H.S. (1977): On MHD flow and heat transfer over a semi-infinite plate under the transverse magnetic field. Nuclear Engineering and Design, vol.42, pp.233-236.
  • [2] Rossow V.J. (1958): On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field. NACA, Rept. No.1358.
  • [3] Takhar H.S., Byrne J.E. and Soundalgekar V.M (1976): Viscous dissipation effects on combined forced and free convection in a boundary layer flow. MECH. RES. COMM, vol.3, pp.451-455.
  • [4] Aziz A. (2006): Heat Conduction with Maple. USA: Edwards Inc.
  • [5] Slattery J.C. (1972): Momentum, Energy and Mass Transfer in Continuum. New York: MC Graw-Hill.
  • [6] Sakiadis B.C. (1961): Boundary layer behavior on continuous solid surface. AIChEJ, vol.7, pp.26-28.
  • [7] Kumari M., Takhar H.S. and Nath G. (1990): MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux. Warme and Stoffubertragung, vol.25, pp.331-336.
  • [8] Beg A., Bakir A.Y., Prasad V.R. and Ghosh S.K. (2009): Nonsimilar, laminar, steady, electrically conducting forced convection liquid metal boundary layer flow with induced magnetic field effects. International Journal of Thermal Science, vol.48, pp.1596-1606.
  • [9] Takhar H.S. (1999): Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field. Int. J. Engineering Science, vol.37, No.13, pp.1723-1736.
  • [10] Srinivasa A.H. and Eswara A.T. (2011): Unsteady MHD Laminar Boundary Layer due to an impulsive stretching surface. World Congress on Engineering (WCE), vol.1, pp.252-255.
  • [11] Sarma Devi C.D. and Nagraj M. (1984): Heat and mass transfer in unsteady MHD flow over a semi infinite flat plate. Indian J. Pure App. Math, vol.15, No.10, pp.1148-1161.
  • [12] Elbashbeshy E.M.A. and Aldawody D. (2010): Heat transfer over an unsteady stretching surface with variable heat flux in the presence of heat source or sink. Journal Computer and Mathematics with Applications, vol.60, No.10, pp.2806-2811.
  • [13] Chamkha A.J. (1999): Steady, laminar, free convection flow over a wedge in the presence of a magnetic field and heat generation or absorption. Int. J. Heat and Fluid Flow, vol.20, No.84.
  • [14] Watanabe T. (1993): MHD free convection flow over a wedge in the presence of a transverse magnetic field. Int. Comm., Heat and Mass Transfer, vol.20, pp.471-480.
  • [15] Ferdows M., Bangalee M.Z.I., Crepeau J.C. and Seddeek M.A. (2011): The effect of variable viscosity in double diffusion problem of MHD from a porous boundary with internal heat generation. Progress in Computational Fluid Dynamics, An International Journal, vol.11, No.1, pp.54-65.
  • [16] Idowu A.S., Dada M.S. and Jimoh A. (2013): Heat and mass transfer of magnetohydrodynamic (MHD) and dissipative fluid flow past a moving vertical porous plate with variable suction. Mathematical Theory and Modeling, vol.3, No.3, pp.80-110.
  • [17] Sarveshanand and Singh A.K. (2015): Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field. Springerplus, vol.4, No.333.
  • [18] Jha B. and Babatunde A. (2018): Interplay of non-conducting and conducting walls on magnetohydrodynamic (MHD) natural convection flow in vertical micro-channel in the presence of induced magnetic field. Propulsion and Power Research, 2018, Article in Press.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20bbdfc5-17ec-4359-9406-b8f9d4347c67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.