Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Administrative services such social care, tax reduction, and many others using complex decision processes, request individuals to provide large amounts of private data items, in order to calibrate their proposal to the specific situation of the applicant. This data is subsequently processed and stored by the organization. However, all the requested information is not needed to reach the same decision. We have recently proposed an approach, termed Minimum Exposure, to reduce the quantity of information provided by the users, in order to protect her privacy, reduce processing costs for the organization, and financial lost in the case of a data breach. In this paper, we address the case of decision making processes based on sets of classifiers, typically multi-label classifiers. We propose a practical implementation using state of the art multi-label classifiers, and analyze the effectiveness of our solution on several real multi-label data sets.
Wydawca
Czasopismo
Rocznik
Tom
Strony
219--236
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- INRIA and University of Versailles SMIS team Domaine de Voluceau 78153 Le Chesnay, France
autor
- INRIA and Ecole Polytechnique Laboratoire d’Informatique de l’Ecole Polytechnique 91128, Palaiseau, France
autor
- INRIA and University of Versailles SMIS team Domaine de Voluceau 78153 Le Chesnay, France
autor
- Ecole Polytechnique and Athens University of Economics and Business Laboratoire d’Informatique de l’Ecole Polytechnique 91128, Palaiseau, France
Bibliografia
- [1] Aggarwal, C. C., Pei, J., Zhang, B.: On Privacy Preservation against adversarial Data Mining, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2006.
- [2] Aggarwal, C. C., Yu, P. S.: A general survey of privacy preserving data mining models and algorithms, Advances in Database Systems, 34, 2008.
- [3] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases, Proceedings of the 28th International Conference on Very Large Databases (VLDB), 2002.
- [4] Anciaux, N., Bezza, W., Nguyen, B., Vazirgiannis, M.: MinExp-Card: Limiting Data Collection Using a Smart Card, Proceedings of the 16th International Conference on Extending Database Technology (EDBT), 2013.
- [5] Anciaux, N., Nguyen, B., Vazirgiannis, M.: Limiting Data Collection in Online Forms, Proceedings of the IEEE 10th International Conference on Privacy, Security and Trust (PST), 2012.
- [6] Anciaux, N., Nguyen, B., Vazirgiannis, M.: Minimum Exposure in classification scenarios, Technical report, INRIA Rocquencourt, 2012.
- [7] Anciaux, N., Nguyen, B., Vazirgiannis, M.: The Minimum Exposure Project: Limiting Data Collection in Online Forms, ERCIM News, 90, 2012.
- [8] Anderson, A. H.: An Introduction to the Web Services Policy Language (WSPL), Proceedings of the IEEE 5th International Workshop on Policies for Distributed Systems and Networks (POLICY), 2004.
- [9] Ardagna, C. A., de Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.: Minimising Disclosure of Client Information in Credential-Based Interactions, International Journal of Information Privacy, Security and Integrity, 1(2-3), 2012.
- [10] Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy authorization language 1.2 (EPAL 1.2), W3C Member Submission, 2003.
- [11] Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction and decision tables for credit-risk evaluation, Management Science, 49(3), 2003.
- [12] Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds tightening techniques for non-convex MINLP, Optimization Methods and Software, 24(4-5), 2009.
- [13] Brickell, J., Schmatikov, V.: The cost of privacy : destruction of Data mining utility in anonymized data publishing, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2008.
- [14] Chen,W., Clarke, L., Kurose, J., Towsley, D.: Optimizing cost-sensitive trust-negotiation protocols, Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), 2005.
- [15] Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, W3C Recommendation, 2002.
- [16] Duda, R. O., Hart, P. E., Stork, D.: Pattern Classification, John Wiley and Sons Inc, 2001.
- [17] Dwork, C., Lei, J.: Differential privacy and robust statistics, Proceedings of the 41st ACM Symposium on Theory of Computing (STOC), 2009.
- [18] Evfimievski, A., Grandison, T.: Privacy Preserving Data Mining, IGI Global, 2009.
- [19] Fourer, R., Gay, D. M., Kernighan, B. W.: AMPL : A Modeling Language for Mathematical Programming, second edition, Duxbury Press, 2002.
- [20] Friedman, A., Schuster, A.: Data mining with differential privacy, Proceedings of the 16th ACM SIGKDD international conference on Knowledge Discovery and Data mining, 2010.
- [21] Fung, B. C. M., Wang, K., Chen, R., Yu, P. S.: Privacy Preserving Data Publishing : A Survey, ACM Computing Surveys, 42(4), 2010.
- [22] Huysmans, J., Baesens, B., Vanthienen, J.: Using rule extraction to improve the comprehensibility of predictive models, Open Access publications from Katholieke Universiteit Leuven, 2007.
- [23] LeFevre, K., DeWitt, D. J., Ramakrishnan, R.: Workload-aware anonymization techniques for large-scale datasets, ACM Transations on Database Systems (TODS), 33(3), 2008.
- [24] Mohammed, N., Chen, R., Fung, B. C. M., Yu, P. S.: Differentially private data release for data mining, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data mining (KDD), 2011.
- [25] Moses, T.: Extensible access control markup language (XACML) version 2.0., Oasis Standard, 2005.
- [26] Ponemon Institute, LLC.: 2010 Annual Study: U.S. Cost of a Data Breach, 2011.
- [27] Samarati, P.: Protecting respondents’ identities in microdata release, IEEE Transactions on Knowledge and Data Engineering (TKDE), 13(6), 2001.
- [28] Sweeney, L.: k-Anonymity: a model for protecting privacy, International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10, 2002.
- [29] Tsoumakas, G., Katakis, I.: Multi-label classification: An overview, International Journal of Data Warehousing and Mining, 3(3), 2007.
- [30] Verykios, V. S., Elagarmid, A. K., Bertino, E., Saygin, Y., Dasseni, E.: Association Rule Hiding, Transactions on Knowledge and Data Engineering (TKDE), 16(4), 2004.
- [31] Xiao, X., Tao, Y.: Personalized privacy preservation, Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), 2006.
- [32] Yao, D., Frikken, F. B., Atallah, M. J., Tamassia, R.: Private information: To reveal or not to reveal, ACM Transactions on Information and System Security (TISSEC), 12(1), 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20ba69b3-8044-4fad-9321-bd610f14b338
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.