PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The effects of two-phase partial annealing on the impact energy absorption of AR400 steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to evaluate whether the impact resistance of AR400 abrasion-resistant steel, known for its superior tribological properties and wear capabilities, could be enhanced through a two-phased partial annealing heat treatment process while maintaining material hardness and wear resistance. The hypothesis posited that successful heat treatment would improve the wear plate's combined impact and wear resistance, potentially enabling the use of thinner steel materials with comparable wear properties in traditional earth-moving machine wear packages. The study began by establishing the mechanical properties of control specimens through metallurgical analyses for baseline comparison. The Phase 1 heat treatment process involved heating specimens of three different material thicknesses to 1000°C for 20 minutes, followed by oil quenching, which reduced the martensitic content and fostered a predominantly bainitic phase dispersion. Phase 2 involved heating the specimens to 750°C for 20 minutes and rapidly quenching them in cool water. SEM analysis confirmed the bainitic dispersion and revealed that Phase 2 partial annealing only marginally influenced the phase dispersions established in Phase 1. The heat treatment significantly enhanced the materials' impact resistance and toughness but reduced hardness and brittleness. Material elongation nearly doubled across all thicknesses, indicating improved ductility, while Impact testing at -40°C demonstrated substantial increases in impact energy absorption. These findings suggest that while the two-phased partial annealing process holds promise, further refinement is needed to optimize the balance between impact resistance, ductility, tensile strength, and hardness.
Twórcy
autor
  • Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, South Africa
autor
  • Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, South Africa
  • Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, South Africa
  • Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, South Africa
Bibliografia
  • 1. ESP, Ground Engaging Tools, Equipment Spare Parts Africa (Pty) Ltd, Johannesburg, 2025.
  • 2. Le Roux W., Beneke L. W. and Adegbola T. A. Evaluation of composite and standard liner plates on hydraulic face shovels operating in platinum mines, South African Journal for Science and Technology, 2022; 40(1): 127–139.
  • 3. Allen C., Protheroe B. E. and Ball A. The selection of abrasion-corrosion-resistant materials for goldmining equipment, Journal of the South African Institute of Mining and Metallurgy, 1981; 289–297.
  • 4. Mukherjee A., Biswas C., Ghosh S., Majumder A., Sawrav K. and Banerjee S., Comparison of abrasion resistance of selected structural steels: A study, International Journal of Advances in Engineering and Management (IJAEM), 2022; 4(3): 232–238.
  • 5. Barker K. C. The development of abrasive-corrosive wear resistance of steels by microstructural control, Cape Town: University of Cape Town (UCT), 1988.
  • 6. Viljoen N. Driving the hydrogen economy in South Africa, Anglo American, 2022.
  • 7. Frydman S., Konat L. and Pekalski G. Structure and hardness changes in welded joints of Hardox steels, Structure and hardness changes in welded joints of Hardox steels Archives of Civil and Mechanical Engineering, 2008; 8: 15–27.
  • 8. Zhu X., Lin J., Jiang S., Cao A., Yao Y., Sun Y., Li S. and Zhang Z. Study of the effects on the strengthening mechanism and wear behavior of wear-resistant steel of temperature controlling in heat treatment, Nanomaterials, 2024; 14(14): 1–16.
  • 9. Zou J. L., Liu S. L., Zheng Z. B., Long J., Huang Y., Zheng K. H. and Tian Z. Research on impact–abrasion–corrosion behavior of three typical wear-resistant steels under high impact energy, Journal of Materials Engineering and Performance, 2022; 31: 434–4356.
  • 10. ESB, Wear-resistant steel, ESB, 2025.
  • 11. Rao P. N., Rengaswamy J. and Singh D. Effect of annealing on microstructure and mechanical properties of Al 6061 alloy processed by cryorolling, Materials Science and Technology, 2013; 29(1): 76–82.
  • 12. Zhang Q., You N., Wang J., Xu Y., Zhang K. and Wang S. Effect of temperature-dependent low oxygen partial pressure annealing on SiC MOS, Nanomaterials, 2024; 192(14): 1–8.
  • 13. Mohapatra S., Poojari G., Satpathy B., Das S. and Das K. A comprehensive study on the effect of annealing temperature on the tensile and impact behavior of automotive-grade medium manganese steel (Fe-6.22Mn-0.18C), Journal of Materials Engineering and Performance, 2023; 33: 5348–5363.
  • 14. Alifrano A., Wibawa S. and Hidayat M. Effect of intercritical annealing temperature and holding time on microstructure and mechanical properties of dual phase low carbon steel, Applied Mechanics and Materials, 2014; 493: 721–726.
  • 15. Lake P. B. and Grenawalt J. J. Partially annealed high strength cold rolled steels, JSTOR - SAE International, 1978; 86(1): 718–729.
  • 16. Meyer W., Jamiru T., Beneke L. W. and Adegbola T. A. The effects of microstructure dispersion on the mechanical properties of abrasion resistant steels, Pretoria, Gauteng, 2024.
  • 17. SSAB, AR400F Checmial Composition, SSAB, 2025.
  • 18. Powers M., Derby B., Shaw A., Raeker E. and Misra A. Microstructural characterization of phase-separated co-deposited Cu–Ta immiscible alloy thin films, Journal of Materials Research, 2020; 35: 1531–1542.
  • 19. Astafurova E., Reunova K., Zagibalova E., Astapov D., Astafurov S. and Kolubaev E. Microstructure, phase composition, and mechanical properties of intermetallic Ni-Al-Cr material produced by dual wire electron-beam additive manufacturing, Metals, 2024; 75(14): 1–13.
  • 20. Leeco Steel, Exploring Steel Plate Heat Treatment Processes, Leeco Steel, Illinois, 2020.
  • 21. Metallurgical Engineering, Transformation of Austenite, Metallurgical Engineering, 2024.
  • 22. Paulo, Different Media for Quenching Metal Explained, Paulo, St Louis, 2017.
  • 23. IMP Labs, Appendix A: Control Specimen Independent Metallurgical Test Results, IMP Labs, Benoni, 2023.
  • 24. Dillinger, Dillidur 400 - Wear Resistant Steels, Dillinger, 2016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20b95aab-a874-4b1e-9821-3c37ac149805
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.