PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of depth and particle size on spontaneous combustion of coal in deep underground mines of Jharia coalfifield

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since their inception, the deep mines have faced the challenges of spontaneous heating and fire. The study examines the impact of coal seam depth and particle size on the spontaneous combustion of coal. A spontaneous heating study of seven coal samples shows moisture, volatile matter, and ash do not exhibit any clear trend except for fixed carbon, which shows a direct relationship. However, crossing point temperature (CPT) and thermo-gravimetric (TGignition) temperature reveal an inverse relationship between spontaneous combustion and the depth of the coal seam. Five size ranges: < 106, 106–212, 212–425, 425–2000, and 0–212 μm are studied, which displayed an increase in mean specific surface area (SSA) by 87% and a decrease in mean D90 value by 93%, with a decrease in particle size from 2000 to 106 μm. The reduction in particle size increases the spontaneous heating tendency by nearly 12–14%. The results show that external factors like coal seam depth, particle size, specific surface area (SSA), mining methods, and others influence spontaneous heating and fire in the Jharia coalfield. Additionally, we develop three mathematical models to forecast spontaneous heating in deep underground coal mines, considering CPT, TGignition, particle size (D90), SSA, and coal seam depth.
Rocznik
Strony
117--129
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • CSIR - Central Institute of Mining and Fuel Research, Barwa Road Campus, Dhanbad, 826001, Jharkhand, India
  • Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
  • CSIR - Central Institute of Mining and Fuel Research, Barwa Road Campus, Dhanbad, 826001, Jharkhand, India
  • CSIR - Central Institute of Mining and Fuel Research, Barwa Road Campus, Dhanbad, 826001, Jharkhand, India
  • CSIR - Central Institute of Mining and Fuel Research, Barwa Road Campus, Dhanbad, 826001, Jharkhand, India
Bibliografia
  • [1] Xie H, Gao F, Ju Y, Zhang R, Gao Y. Quantitative definition and investigation of deep mining. J China Coal Soc 2015; 40(1):1e10.
  • [2] Top five coal producing countries (million tonnes. Global- Data; 2021. https://www.globaldata.com/data-insights/ mining/the-top-five-coal-producing-countries-milliontonnes- 2021/. [Accessed 17 July 2023].
  • [3] Coal inventory central mine planning & design institute limited, CMPDI (A mini Ratna company). https://www. cmpdi.co.in/en/coal-inventory. [Accessed 17 July 2023].
  • [4] Dhar BB. Keynote address on status of mine fires e trends and challenges. In: Prevention and control of mine and industrial fires - trends and challenges, Kolkata; 1996. p. 1e8.
  • [5] Mohalik VK, NK, Singh RVK, Sural G, Barnwal RP, Pandey J, et al. Environmental impacts of coal mine fire during excavation of developed galleries by opencast method. Indian Min. Eng. Journal, Bhubaneswar 2004;33(11):30e5.
  • [6] Pandey J, Kumar D, Singh VK, Mohalik NK. Environmental and socio-economic impacts of fire in Jharia coalfield, Jharkhand, India: an appraisal. Curr Sci 2016;110(9):1639e50. https://doi.org/10.18520/cs/v110/i9/1639-1650.
  • [7] Song Z, Zhu H, Jia G, He C. Comprehensive evaluation on self-ignition risks of coal stockpiles using fuzzy AHP approaches. J Loss Prev Process Ind 2014;32:78e94. https:// doi.org/10.1016/j.jlp.2014.08.002.
  • [8] Ranjith PG, Zhao J, Ju M, De Silva RVS, Rathnaweera TD, Bandara AKMS. Opportunities and challenges in deep mining: a brief review. Engineering 2017;3(4):546e51. https:// doi.org/10.1016/J.ENG.2017.04.024.
  • [9] Singh RN, Demirbilek S. Statistical appraisal of intrinsic factors affecting spontaneous combustion of coal. Min Sci Technol 1987;4:155e65.
  • [10] Morris R, Atkinson T. Geological and mining factors affecting spontaneous heating of coal. Min Sci Technol 1986; 3(3):217e31. https://doi.org/10.1016/S0167-9031(86)90370-1.
  • [11] Morris R, Atkinson T. Seam factor and the spontaneous heating of coal. Min Sci Technol 1988;7:149e59.
  • [12] Banerjee SC. Prevention and combating mine fires, vol. 33. Oxford IBH Publ. Co; 2000.
  • [13] Ghosh A, Mukhopadhyay SK. Tectonic history of the jharia basindan intracratonicGondwana basin of eastern India. J Geol Met Soc 1985;57:33e58.
  • [14] Hazra PN KA, Rudra M, Guha S, Kar MK, Basumatary JK. Geochemical characterization of Coalbed gas of jharia & Raniganj basins and its implications. In: Proceedings of international conference, Mussauri, India; 2003.
  • [15] Chatterjee CN, Ghose S, Chandra D. Micropetrographic characteristics of certain Lower Permian coal seams of India with special reference to their mode of formation. Int J Coal Geol 1990;14(4):295e308. https://doi.org/10.1016/0166-5162 (90)90085-D.
  • [16] Banerjee SC. Spontaneous combustion of coal & mine fire, vol. 44. New Delhi: Oxford & IBH Publishing Co; 1985.
  • [17] Mishra DP. Effects of intrinsic properties, particle size and specific surface area on WOP and spontaneous combustion susceptibility of coal. Adv Powder Technol 2022;33(3). https://doi.org/10.1016/j.apt.2022.103454.
  • [18] Li B, Li M, Gao W, Mingshu B, Ma L, Qin Q, et al. Effects of particle size on the self-ignition behaviour of a coal dust layer on a hot plate. Fuel 2020;260(Jan). https://doi.org/ 10.1016/j.fuel.2019.116269.
  • [19] Schmidt LD. Changes in coal during storage. In: Chemistry of coal utilization. New York, NY: H.H. Lowry.New York: John Wiley and Sons Inc.; 1945. p. 627e76.
  • [20] Carpenter GDSDL. The initial stage of the oxidation of coal with molecular oxygen. Fuel 1966;43(4):311e27.
  • [21] Rifella A, Setyawan D, Chun DH, Yoo J, Kim SD, Rhim YJ, et al. The effects of coal particle size on spontaneous combustion characteristics. Int J Coal Prep Util 2022;42(3): 499e523. https://doi.org/10.1080/19392699.2019.1622529.
  • [22] Mohalik NK, Lester E, Lowndes IS. Review of experimental methods to determine spontaneous combustion susceptibility of coaleIndian context. Int J Min Reclamat Environ 2017; 31(5):301e32. https://doi.org/10.1080/17480930.2016.1232334.
  • [23] IS:1350. Indian standard - methods of test for coal and coke. Bur. Indian Stand.; 1984. p. 28. IS:1350.
  • [24] Rice DD. “Composition and origins of coalbed gas,” Hydrocarbons from coal. 2021. https://doi.org/10.1306/ st38577c7.
  • [25] Panalytical M. Mastersizer 3000 Руководство по эксплуатации, vol. 0; 2013.
  • [26] Safety DG of M. Coal mine regulation 20173; 2017. p. 160e280.
  • [27] Mohalik NK, Panigrahi DC, Singh VK. Application of thermal analysis techniques to assess proneness of coal to spontaneous heating: AAn overview. J Therm Anal Calorim 2009;98(2):507e19. https://doi.org/10.1007/s10973-009- 0305-z.
  • [28] Nandy DK, Banerjee DD, Chakraborty RN. Effect of incombustible material on critical oxidation temperature of coal. Indian J Technol 1965;3:160e3.
  • [29] Mishra DP, Kumar K, Sahu JN. Study of pyrolyzates from a variety of Indian coals and their dependency on coal type and intrinsic properties e an analytical fast pyrolysis study. Combust Sci Technol 2022;194(13):2771e92. https://doi.org/ 10.1080/00102202.2021.1890722.
  • [30] P. Frazer Jr, “Classification of coals,” 1877.
  • [31] Palmer AD, Cheng M, Goulet J-C, Furimsky E. Relation between particle size and properties of some bituminous coals. Fuel 1990;69(2):183e8. https://doi.org/10.1016/0016- 2361(90)90171-L.
  • [32] Dhar B. Keynote address on status of mine fires d trends and challenges. In: Seminar on prevention and control of mine and industrial fires d trends and challenges. Kolkata: MGMI; 1996. p. 1e8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20b6396a-47db-4078-987f-4902a6eb1261
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.