PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas transfer velocities in Norwegian fjords and the adjacent North Atlantic waters

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigated air-sea carbon dioxide (CO2) transfer in situ to determine the role of wind and turbulence in forcing gas transfer. In situ gas transfer velocities of CO2 were measured with a floating chamber technique along the Norwegian coast and inside the Sogne- and Trondheimsfjord. Gas transfer velocities were related to wind speed and turbulence, but neither wind speed nor turbulence can satisfactorily predict gas transfer velocity. However, comparison to existing wind-based parameterizations showed that the data from this study have a similar trend. Generally, we measured higher transfer velocities than the parameterizations predict. In the North Atlantic, we measured transfer velocities of up to 54.9 cm h-1 versus predicted transfer velocities of 6.3 cm h-1 at a wind speed of 3.7 m s-1. In addition, we observed that measurements of transfer velocities at wind speeds below 4 m s-1 are higher than predictions. Wind-based parameterizations are lacking data in the low wind regime for validation, and we provide 25 data points for this critical wind speed range. Overall, results indicate that Norwegian fjords and the adjacent North Atlantic are sinks for atmospheric CO2 during summer, with uptake rates of -9.6 ± 7.6 μmol m-2 min-1 and -4.1 ± 1.7 μmol m-2 min-1, respectively. Due to the low partial pressure of CO2 in the upper water layer of the stratified fjords (down to 150.7 μatm), the Sogne- and Trondheimsfjord absorb 196 tons of carbon per day during the summer.
Czasopismo
Rocznik
Strony
460--470
Opis fizyczny
Bibliogr. 57 poz., mapa, tab., wykr.
Twórcy
  • Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
autor
  • Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
  • Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
  • Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
Bibliografia
  • [1] Andersson, A., Falck, E., Sjöblom, A., Kljun, N., Sahlée, E., Omar, A. M., Rutgersson, A., 2017. Air-sea gas transfer in high Arctic fjords. Geophys. Res. Lett. 44 (5), 2519-2526, http://dx.doi.org/10.1002/2016GL072373.
  • [2] Bock, E. J., Hara, T., Frew, N. M., McGillis, W. R., 1999. Relationship between air-sea gas transfer and short wind waves. J. Geophys. Res.-Oceans 104 (C11), 25821-25831, http://dx.doi.org/10.1029/1999jc900200.
  • [3] Borges, A. V., Delille, B., Schiettecatte, L. S., Gazeau, F., Abril, G., Frankignoulle, M., 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol. Oceanogr. 49 (5), 1630-1641, http://dx.doi.org/10.4319/lo.2004.49.5.1630.
  • [4] Bozec, Y., Thomas, H., Elkalay, K., de Baar, H. J. W., 2005. The continental shelf pump for CO2 in the North Sea — evidence from summer observation. Mar. Chem. 93 (2-4), 131-147, http://dx.doi.org/10.1016/j.marchem.2004.07.006.
  • [5] Cai, W.-J., 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu. Rev. Mar. Sci. 3, 123-145, http://dx.doi.org/10.1146/annurev-marine-120709-142723.
  • [6] Donelan, M., Drennan, W., 1995. Direct field measurements of the flux of carbon dioxide. In: Jähne, B., Monahan, E. C. (Eds.), Air-water Gas Transfer. Aeon Ver., Hanau, 677-683.
  • [7] Doney, S. C., Fabry, V.J., Feely, R. A., Kleypas, J. A., 2009. Ocean acidification: the other CO2 problem Annu. Rev. Mar. Sci. 1, 169-192, http://dx.doi.org/10.1146/annurev.marine.010908.163834.
  • [8] Esters, L., Landwehr, S., Sutherland, G., Bell, T. G., Christensen, K. H., Saltzman, E. S., Miller, S. D., Ward, B., 2017. Parameterizing air-sea gas transfer velocity with dissipation. J. Geophys. Res. 122 (4), 3041-3056, http://dx.doi.org/10.1002/2016JC012088.
  • [9] Fabry, V. J., Seibel, B. A., Feely, R. A., Orr, J. C., 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65 (3), 414-432, http://dx.doi.org/10.1093/icesjms/fsn048.
  • [10] Frew, N. M., Nelson, R. K., McGillis, W. R., Edson, J. B., Bock, E. J., Hara, T., 2002. Spatial variations in surface microlayer surfactants and their role in modulating air-sea exchange. In: Gas Transfer at Water Surfaces. American Geophys Union, Washington, DC, 153-159.
  • [11] Garbe, C. S., Rutgersson, A., Boutin, J., de Leeuw, G., Delille, B., Fairall, C. W., Gruber, N., Hare, J., Ho, D. T., Johnson, M. T., Nightingale, P. D., Pettersson, H., Piskozub, J., Sahlée, E., Tsai, W.-T., Ward, B., Woolf, D. K., Zappa, C. J., 2014. Transfer-across the air-sea interface. In: Liss, P. S., Johnson, M. T. (Eds.), Ocean-Atmosphere Interactions of Gases and Particles. Springer, Heidel-berg, 55-112.
  • [12] Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., Varfalvy, L., 2007. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J. Mar. Syst. 66 (1-4), 161-172, http://dx.doi.org/10.1016/j.jmarsys.2006.03.019.
  • [13] Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., Hill, P., 2006. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys. Res. Lett. 33 (16), L16611, http://dx.doi.org/10.1029/2006GL026817.
  • [14] Ho, D. T., Wanninkhof, R., Schlosser, P., Ullman, D. S., Hebert, D., Sullivan, K. F., 2011. Toward a universal relationship between wind speed and gas exchange: gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment. J. Geophys. Res. 116 (C4), C004F04, http://dx.doi.org/10.1029/2010JC006854.
  • [15] Hong, H., Shen, R., Zhang, F., Wen, Z., Chang, S., Lin, W., Kranz, S. A., Luo, Y.-W., Kao, S.-J., Morel, F. M., 2017. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium. Science 356 (6337), 527-531, http://dx.doi. org/10.1126/science.aal2981.
  • [16] Jeffery, C. D., Robinson, I. S., Woolf, D. K., 2010. Tuning a physically-based model of the air-sea gas transfer velocity. Ocean Model. 31 (1-2), 28-35, http://dx.doi.org/10.1016/j.ocemod.2009.09.001.
  • [17] Johnson, M., 2010. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci. 6 (4), 913-932, http://dx.doi.org/10.5194/os-6-913-2010.
  • [18] Kilcher, L. F., Thomson, J., Harding, S., Nylund, S., 2017. Turbulence measurements from compliant moorings. Part II: Motion correction. J. Atmos. Ocean Technol. 34, 1249-1266, http://dx.doi.org/10.1175/jtech-d-16-0213.1.
  • [19] Kilcher, L., Thomson, J., Talbert, J., DeKlerk, A., 2016. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites. National Renewable Energy Lab., http://dx.doi.org/10.2172/1244672.
  • [20] Kleemann, M., Meliß, M., 1993. Regenerative Energiequellen: mit 75 Tabellen, 2nd edn. Springer, Berlin.
  • [21] Kremer, J. N., Nixon, S. W., Buckley, B., Roques, P., 2003. Technical note: Conditions for using the floating chamber method to estimate air-water gas exchange. Estuaries 26, 985-990, http://dx.doi.org/10.1007/BF02803357.
  • [22] Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., Gattuso, J. P., 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19 (6), 1884-1896, http://dx.doi.org/10.1111/gcb.12179.
  • [23] Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S. I., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S., Zheng, B., 2018. Global Carbon Budget 2018. Earth Syst. Sci. Data 10 (4), 2141-2194, http://dx.doi.org/10.5194/essd-10-2141-2018.
  • [24] Manzetti, S., Stenersen, J. H. V., 2010. A critical view of the environmental condition of the Sognefjord. Mar. Poll. Bull. 60 (12), 2167-2174, http://dx.doi.org/10.1016/j.marpolbul.2010.09.019.
  • [25] Mascarenhas, V. J., Voß, D., Wollschlaeger, J., Zielinski, O., 2017. Fjord light regime: bio-optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway. J. Geophys. Res. 122, 3828-3847, http://dx.doi.org/10.1002/2016JC012610.
  • [26] McGillis, W. R., Edson, J. B., Ware, J. D., Dacey, J. W., Hare, J. E., Fairall, C. W., Wanninkhof, R., 2001. Carbon dioxide flux techniques performed during GasEx-98. Mar. Chem. 75 (4), 267-280, http://dx.doi.org/10.1016/S0304-4203(01)00042-1.
  • [27] Meire, L., Søgaard, D., Mortensen, J., Meysman, F., Soetaert, K., Arendt, K., Juul-Pedersen, T., Blicher, M., Rysgaard, S., 2015. Glacial meltwater and primary production are drivers of strong CO2 uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet. Biogeosciences 12 (8), 2347-2363, http://dx.doi.org/10.5194/bg-12-2347-2015.
  • [28] Mustaffa, N. I. H., Ribas-Ribas, M., Banko-Kubis, H. M., Wurl, O., in preparation. In situ CO2 transfer velocity reduction by natural surfactants in the sea surface microlayer. Nat. Commun.
  • [29] Pereira, R., Schneider-Zapp, K., Upstill-Goddard, R. C., 2016. Surfactant control of gas transfer velocity along an offshore coastal transect: results from a laboratory gas exchange tank. Biogeosciences 13 (13), 3981-3989, http://dx.doi.org/10.5194/bg-13-3981-2016.
  • [30] Pringault, O., Tassas, V., Rochelle-Newall, E., 2007. Consequences of respiration in the light on the determination of production in pelagic systems. Biogeosciences 4 (1), 105-114, http://dx.doi.org/10.5194/bg-4-105-2007.
  • [31] Quinn, G. P., Keough, M. J., 2009. Experimental Design and Data Analysis for Biologists. Cambridge Univ. Press, New York, 537 pp.
  • [32] R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • [33] Raymond, P. A., Cole, J. J., 2001. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24 (2), 312-317, http://dx.doi.org/10.2307/1352954.
  • [34] Ribas-Ribas, M., Helleis, F., Rahlff, J., Wurl, O., 2018a. Air-sea CO2-exchange in a large annular wind-wave tank and the effects of surfactants. Front. Mar. Sci. 5, 457, http://dx.doi.org/10.3389/fmars.2018.00457.
  • [35] Ribas-Ribas, M., Kilcher, L., Wurl, O., 2018b. Sniffle: A step forward to measure in situ CO2 fluxes with the floating chamber technique. Elementa 6 (1), 14, http://dx.doi.org/10.1525/elementa.275.
  • [36] Ribas-Ribas, M., Mustaffa, N. I. H., Rahlff, J., Stolle, C., Wurl, O., 2017. Sea Surface Scanner (S3): A catamaran for high-resolution measurements of biogeochemical properties of the sea surface microlayer. J. Atmos. Oceanic Technol. 34 (7), 1433-1448, http://dx.doi.org/10.1175/jtech-d-17-0017.1.
  • [37] Romano, J.-C., 1996. Sea-surface slick occurrence in the open sea (Mediterranean, Red Sea, Indian Ocean) in relation to wind speed. Deep-Sea Res. Pt. I 43 (4), 411-423, http://dx.doi.org/10.1016/0967-0637(96)00024-6.
  • [38] Rutgersson, A., Smedman, A., 2010. Enhanced air-sea CO2 transfer due to water-side convection. J. Mar. Syst. 80 (1-2), 125-134, http://dx.doi.org/10.1016/j.jmarsys.2009.11.004.
  • [39] Sætre, R., Aure, J., Danielssen, D., 2003. Long-term hydrographic variability patterns off the Norwegian coast and in the Skagerrak. ICES Marine Sci. Sym. 150-159.
  • [40] Schlitzer, R., 2017. Ocean Data View. Ver 5.0.0., https://odv.awi.de/.
  • [41] Skagseth, Ø., Drinkwater, K. F., Terrile, E., 2011. Wind- and buoyancy-induced transport of the Norwegian Coastal Current in the Barents Sea. J. Geophys. Res.-Oceans 116 (C8), C08007, http://dx.doi.org/10.1029/2011JC006996.
  • [42] Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., Galy, V., 2015. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450-453, http://dx.doi.org/10.1038/NGEO2421.
  • [43] Spiess, A.-N., Neumeyer, N., 2010. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacology 10 (1), 6, http://dx.doi.org/10.1186/1471-2210-10-6.
  • [44] Stigebrandt, A., 2012. Hydrodynamics and circulation of fjords. I. In: Bengtsson, L., Herschy, R. W., Fairbridge, R. W. (Eds.), Encyclopedia of Lakes and Reservoirs. Springer Netherlands, Dordrecht, 327-344.
  • [45] Syvitski, J. P. M., Burrell, D. C., Skei, J. M., 1987. Fjords. Processes and Products. Springer, New York, 215 pp.
  • [46] Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. Pt. II 56 (8-10), 554-577, http://dx.doi. org/10.1016/j.dsr2.2008.12.009.
  • [47] Tokoro, T., Watanabe, A., Kayanne, H., Nadaoka, K., Tamura, H., Nozaki, K., Kato, K., Negishi, A., 2007. Measurement of air-water CO2 transfer at four coastal sites using a chamber method. J. Mar. Syst. 66 (1-4), 140-149, http://dx.doi.org/10.1016/j.jmarsys.2006.04.010.
  • [48] Torres, R., Pantoja, S., Harada, N., González, H. E., Daneri, G., Frangopulos, M., Rutllant, J. A., Duarte, C. M., Rúiz-Halpern, S., Mayol, E., Fukasawa, M., 2011. Air-sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res.-Oceans 116 (C9), C09006, http://dx.doi.org/10.1029/2010JC006344.
  • [49] Vachon, D., Prairie, Y. T., Cole, J. J., 2010. The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol. Oceanogr. 55 (4), 1723-1732, http://dx.doi.org/10.4319/lo.2010.55.4.1723.
  • [50] Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373-7382.
  • [51] Wanninkhof, R., 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr 12 (6), 351-362, http://dx.doi.org/10.4319/lom.2014.12.351.
  • [52] Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., McGillis, W. R., 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1, 213-244, http://dx.doi.org/10.1146/annurev.marine.010908.163742.
  • [53] Weiss, R. F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2 (3), 203-215, http://dx.doi.org/10.1016/0304-4203(74)90015-2.
  • [54] Wurl, O., Wurl, E., Miller, L., Johnson, K., Vagle, S., 2011. Formation and global distribution of sea-surface microlayers. Biogeosciences 8 (1), 121-135, http://dx.doi.org/10.5194/bg-8-121-2011.
  • [55] Zappa, C. J., McGillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W. H., Ho, D. T., 2007. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys. Res. Lett. 34 (10), L01601, http://dx.doi.org/10.1029/2006GL028790.
  • [56] Zappa, C. J., Raymond, P. A., Terray, E. A., McGillis, W. R., 2003. Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26 (6), 1401-1415, http://dx.doi.org/10.1007/BF02803649.
  • [57] Zhang, X., Cai, W.-J., 2007. On some biases of estimating the global distribution of air-sea CO2 flux by bulk parameterizations. Geophys. Res. Lett. 34 (1), L01608, http://dx.doi.org/10.1029/2006GL027337.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20b5532f-0f1a-4984-acac-53bbaa1f27de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.