Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Accurate characterization of optical fibers is crucial for numerous applications in telecommunications, sensing, and medical diagnostics. In this study, a novel method of sizing of step-index fibers is presented on the basis of the analysis of data on light scattering. This approach integrates mathematical modeling of light scattering by step-index fibers with signal processing and correlation algorithms to extract information on the layered structure of the fiber under test. Practical measurements use of a novel optical system for laboratory-level tests. The results show a clear route to improve non-destructive and efficient fiber characterization in online industrial process control.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
609--617
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., wzory
Twórcy
autor
- Wroclaw University of Science and Technology, Department of Electronics, Photonics, and Microsystems, Chair of Electronic and Photonic Metrology, B. Prusa 53/55, 50-317 Wroclaw, Poland
Bibliografia
- [1] Flusberg, B. A., Cocker, E. D., Piyawattanametha, W., Jung, J. C., Cheung, E. L. M., & Schnitzer, M. J. (2005). Fiber-optic fluorescence imaging. Nature Methods, 2(12), 941-950. https://doi.org/10.1038/nmeth820
- [2] Kisała, P., Kalizhanova, A., Kozbakova, A., & Yeraliyeva, B. (2023). Identification of cladding modes in SMF-28 fibers with TFBG structures. Metrology and Measurement Systems, 30(3), 507-518. https://doi.org/10.24425/mms.2023.146418
- [3] Harasim, D., & Cięszczyk, S. (2022). A novel method of elimination of light polarization cross sensitivity on tilted fiber Bragg grating bending sensor. Metrology and Measurement Systems, 29(4), 737-749. https://doi.org/10.24425/mms.2022.143066
- [4] Boffi, P., Martelli, P., Gatto, A., & Martinelli, M. (2013). Mode-division multiplexing in fibre-optic communications based on orbital angular momentum. Journal of Optics, 15(7), 075403. https://doi.org/10.1088/2040-8978/15/7/075403
- [5] Tatarczak, A., Usuga, M. A., & Tafur Monroy, I. (2015). OAM-enhanced transmission for multimode short-range links. In A. K. Srivastava (Ed.), Next-Generation Optical Networks for Data Centers and Short-Reach Links II. SPIE. https://doi.org/10.1117/12.2079795
- [6] Kisała, P. (2022). Physical foundations determining spectral characteristics measured in Bragg gratings subjected to bending. Metrology and Measurement Systems, 29(3), 573-584. https://doi.org/10.24425/mms.2022.142275
- [7] Marshall, G. F. (2012). Handbook of Optical and Laser Scanning, Marcel Dekker, New York. https://doi.org/10.1201/9781315218243
- [8] Markos, C. (2014). Mapping the structure. Nature Photonics, 9(1), 9-11. https://doi.org/10.1038/nphoton.2014.308
- [9] Onofri, F., Lenoble, A., Bultynck, H., & Guéring, P.-H. (2004). High-resolution laser diffractometry for the on-line sizing of small transparent fibres. Optics Communications, 234(1-6), 183-191. https://doi.org/10.1016/j.optcom.2004.02.026
- [10] Lebrun, D. (1996). Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz-Mie theory. Optical Engineering, 35(4), 946. https://doi.org/10.1117/1.600703
- [11] Khodier, S. A. (2004). Measurement of wire diameter by optical diffraction. Optics & Laser Technology, 36(1), 63-67. https://doi.org/10.1016/s0030-3992(03)00134-8
- [12] Watkins, L. S. (1974). Scattering from side-illuminated clad glass fibers for determination of fiber parameters. Journal of the Optical Society of America, 64(6), 767. https://doi.org/10.1364/josa.64.000767
- [13] Jianbing Wu. (n.d.). Study on the diameter measurement of optical fibers using the method of forward near-axis far-field interference. IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation Is Going (Cat. No.98CH36222). https://doi.org/10.1109/imtc.1998.676904
- [14] Jasapara, J. C. (2005). Non-invasive characterization of microstructured optical fibers using Fourier domain optical coherence tomography. Optics Express, 13(4), 1228. https://doi.org/10.1364/opex.13.001228
- [15] Jasapara, J., Monberg, E., DiMarcello, F., & Nicholson, J. W. (2003). Accurate noncontact optical fiber diameter measurement with spectral interferometry. Optics Letters, 28(8), 601. https://doi.org/10.1364/ol.28.000601
- [16] Świrniak, G. (2020). Non-invasive mesurements of transparent fibres. Metrology and Measurement Systems, 27(1), 19-31. https://doi.org/10.24425/mms.2020.131714
- [17] Han, X., Ren, K. F., Wu, Z., Corbin, F., Gouesbet, G., & Gréhan, G. (1998). Characterization of initial disturbances in a liquid jet by rainbow sizing. Applied Optics, 37(36), 8498. https://doi.org/10.1364/ao.37.008498
- [18] Kavungal, V., Farrell, G., Wu, Q., Kumar Mallik, A., & Semenova, Y. (2018). Studies of geometrical profiling in fabricated tapered optical fibers using whispering gallery modes spectroscopy. Optical Fiber Technology, 41, 82-88. https://doi.org/10.1016/j.yofte.2018.01.007
- [19] Michihata, M., Zheng, Z., Funaiwa, D., Murakami, S., Kadoya, S., & Takahashi, S. (2021). In-Process Diameter Measurement Technique for Micro-Optical Fiber with Standing Wave Illumination. Nanomanufacturing and Metrology, 4(1), 28-36. https://doi.org/10.1007/s41871-020-00081-4
- [20] Fernandes, L. A., Sezerman, O., Best, G., Ng, M. L., & Kane, S. (2016). Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers. In A. Heisterkamp, P. R. Herman, M. Meunier, & S. Nolte (Eds.), SPIE Proceedings. SPIE. https://doi.org/10.1117/12.2213597
- [21] Yablon, A. D. (2009). Multi-Wavelength Optical Fiber Refractive Index Profiling by Spatially Resolved Fourier Transform Spectroscopy. Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. https://doi.org/10.1364/ofc.2009.pdpa2
- [22] Xu, R. (2002). Particle Characterization: Light Scattering Methods. In B. Scarlett (Ed.), Particle Technology Series. Springer Netherlands. https://doi.org/10.1007/0-306-47124-8
- [23] Świrniak, G., & Mroczka, J. (2016). Approximate solution for optical measurements of the diameter and refractive index of a small and transparent fiber. Journal of the Optical Society of America A, 33(4), 667. https://doi.org/10.1364/josaa.33.000667
- [24] Gurwich, I., Shiloah, N., & Kleiman, M. (1999). The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder. Journal of Quantitative Spectroscopy and Radiative Transfer, 63(2-6), 217-229. https://doi.org/10.1016/s0022-4073(99)00017-5
- [25] Li, R., Han, X., Jiang, H., & Ren, K. F. (2006). Debye series of normally incident plane-wave scattering by an infinite multilayered cylinder. Applied Optics, 45(24), 6255. https://doi.org/10.1364/ao.45.006255
- [26] Renxian, L., Xiang’e, H., & Fang, R. K. (2009). Debye series expansion of shaped beam scattering by GI-POF. Optics Communications, 282(22), 4315-4321. https://doi.org/10.1016/j.optcom.2009.07.054
- [27] Fleming, J. W. (1984). Dispersion in GeO2-SiO2 glasses. Applied Optics, 23(24), 4486. https://doi.org/10.1364/ao.23.004486
- [28] Butov, O. V., Golant, K. M., Tomashuk, A. L., van Stralen, M. J. N., & Breuls, A. H. E. (2002). Refractive index dispersion of doped silica for fiber optics. Optics Communications, 213(4-6), 301-308. https://doi.org/10.1016/s0030-4018(02)02087-4
- [29] Świrniak, G., & Mroczka, J. (2017). Numerical analysis of primary rainbows from a homogeneous cylinder and an optical fiber for incident low-coherent light. Journal of Quantitative Spectroscopy and Radiative Transfer, 195, 176-188. https://doi.org/10.1016/j.jqsrt.2017.01.009
- [30] Malitson, I. H. (1965). Interspecimen Comparison of the Refractive Index of Fused Silica. Journal of the Optical Society of America, 55(10), 1205. https://doi.org/10.1364/josa.55.001205
- [31] Fitt, A. D., Furusawa, K., Monro, T. M., Please, C. P., & Richardson, D. J. (2002). Journal of Engineering Mathematics, 43(2/4), 201-227. https://doi.org/10.1023/a:1020328606157
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20a595ec-4ae9-4c4f-ae99-56d0ae271988
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.