PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear-Induced Molecular Orientation of Compression Moulded PE-HD Sheets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents experimental results on orientation of polymer macromolecules in compression moulded high density polyethylene sheets. Properties anisotropy of thermoplastic films or sheets, that are usually formed in the extrusion process, causes deformation of thermoformed products and is a serious technological problem. One of the possible solutions of this problem is application of compression moulded sheets. The paper presents the results of tests of selected strength characteristics of compression moulded PE-HD sheets. A static tensile test was performed and Charpy impact strength was determined. Additionally Chrystler’s orientation test was executed. For comparison the same experiments were performed on extruded sheets. Samples were cut in directions perpendicular and parallel to the direction of polymer flow in pressing and extrusion processes. The obtained results indicate that the compression moulding technique allows the production of sheets that do not exhibit statistically significant anisotropy of the tested strength properties.
Twórcy
  • Department of Theoretical and Applied Mechanics, Silesian University of Technology, ul. Konarski 18A, 44-100 Gliwice, Poland
  • Department of Theoretical and Applied Mechanics, Silesian University of Technology, ul. Konarski 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Krzyżak A., Kosicka E., Szczepaniak R., Szymczak T., Evaluation of the properties of polymer composites with carbon nanotubes in the aspect of their abrasive wear. Journal of Achievements in Materials and Manufacturing Engineering. 2019; 95: 5–12. DOI: 10.5604/01.3001.0013.7619.
  • 2. Mrówka M., Machoczek T., Jureczko P., Joszko K., Gzik M., Wolański W., Wilk K., Mechanical, chemical, and processing properties of specimens manufactured from poly-ether-ether-ketone (PEEK) using 3D printing. Materials. 2021; 14: 2717. https://doi.org/10.3390/ma14112717.
  • 3. Uddin Z., Yasin T., Shafiq M., Development of novel silane modified boric acid high density polyethylene composites for radiation shielding applications. Radiation Physics and Chemistry. 2022; 192: 109909. https://doi.org/10.1016/j.radphyschem.2021.109909.
  • 4. Morris B.A., Thermoforming, orientation, and shrink, the science and technology of flexible packaging, multilayer films from resin and process to end use. Plastics Design Library. 2017; 401–433. https://doi.org/10.1016/B978-0-323-24273-8.00011-3.
  • 5. Klein P.W., Fundamentals of plastic thermoforming, synthesis lectures on materials engineering. Morgan & Claypool Publishers, Ohio University, 2009.
  • 6. Van Mieghem B., Van Bael A., Ivens J., Impact assessment of extrusion anisotropy on quality of thermoformed products. Proceedings of Composite Week @ Leuven and TEXCOMP-11 Conference. Leuven, Belgium, 2013; 1–8.
  • 7. Frankland J., Extrusion orientation: The good and the bad. Plastics Technology, 2016.
  • 8. Griswold P.D., Zachariades A.E., Porte R.S., Solid state coextrusion: A new technique for ultradrawing thermoplastics illustrated with high density polyethylene. Polym. Eng. Sci. 1978; 18: 861–863. https://doi.org/10.1002/pen.760181106.
  • 9. Zhang X.M., Elkoun S., Ajji A., Huneault M.A., Oriented structure and anisotropy properties of polymer blown films: HDPE, LLDPE and LDPE. Polymer. 2004; 45(1): 217–229. https://doi.org/10.1016/j.polymer.2003.10.057.
  • 10. Chan T.W.D., Lee L.J., Analysis of molecular orientation and internal stresses in extruded plastic sheets. Polymer Engineering and science. 1989. https://doi.org/10.1002/pen.760290303.
  • 11. Rauwendaal C., Polymer extrusion. 5th Edition, Hanser Publishers, Munich, 2014.
  • 12. Mead W.T., Porter R.S., The preparation and tensile properties of polyethylene composites. Journal of Applied Polymer Science. 1978; 22(11): 3249–3265. https://doi.org/10.1002/app.1978.070221119.
  • 13. Hyun K., Chong W., Koo M., Chung I.J., Physical properties of polyethylene/silicate nanocomposite blown films. Journal of Applied Polymer Science. 2003; 89(8): 2131–2136. https://doi.org/10.1002/app.12358.
  • 14. Desper C.R., Structure and properties of extruded polyethylene film. Journal of Applied Polymer Science. 1969; 13(1): 169–191. https://doi.org/10.1002/app.1969.070130117.
  • 15. Szumny J., Skotarczak S., The manufacturing technology of flat shapes for the highway engineering by extrusion with compression on a device designed for the production by the method of extrusion blow molding. Plast Process. 2011; 6: 574–579. (In Polish).
  • 16. Pusz A., Szymiczek M., Evaluation concerning the influence that anisotropy of extruded plates of high density polyethylene has on fatigue strength. Plast Process. 2014; 5(161): 436–442. (in Polish).
  • 17. Spalding M.A., Chatterjee A., Handbook of industrial polyethylene and technology: Definitive guide to manufacturing, properties, processing, applications and markets set. 2017 Wiley Global Headquarters. https://doi.org/10.1002/9781119159797.
  • 18. Patel S.R., Orientation studies of high density polyethylene extruded films. PhD Thesis. Loughborough University, 1981.
  • 19. Varghese J., Murugan R., Influence of orientation of extrusion direction and strain rate on the mechanical behavior of extruded thermoplastic sheets. Materials Today: Proceedings. 2018; 5(11), 3, 24043–24049. https://doi.org/10.1016/j.matpr.2018.10.197.
  • 20. Vega V., Clements J., Lam T., Abad A., Fritz B., Ula N., Es-Said O.S., The effect of layer orientation on the mechanical properties and microstructure of a polymer. Journal of Materials Engineering and Performance. 2011; 20(6): 978–988. https://doi.org/10.1007/s11665-010-9740-z.
  • 21. Tyun’kin I.V., Bazhenov S., Bazhenov S., Efimov A.V., Kechek’yan A.S., Timan S.A., The effect of orientation on the mechanism of deformation of polymers. Polymer Science Series A. 2011; 53(8): 715–726. https://doi.org/10.1134/S0965545X11080116.
  • 22. Watts M.P.C., Zachariades A.E., Porter R.S., Shrinkage as a measure of the deformation efficiency of ultra-oriented high density polyethylene. J. Mater. Sci. 1980; 15: 426–430. https://doi.org/10.1007/PL00020076.
  • 23. Russ E., Charles T., On-line measurement of polymer orientation using ultrasonic technology. Polymer Engineering & Science. 2001; 41(9): 1644–1653. https://doi.org/10.1002/pen.10862.
  • 24. Congmei L., Shanshan W., Huimin S., Jiang L., Shaoyun G., Real-time ultrasonic characterization of the chain orientation of high density polyethylene melts during processing Materials Science. Polymer Engineering and Science. 2010; 50(6): 1140–1150. https://doi.org/10.1002/pen.21634.
  • 25. Throne J., 16 – Thermoforming, Applied Plastics Engineering Handbook (Second Edition) Processing, Materials, and Applications, Plastics Design Library. 2017; 345–375. https://doi.org/10.1016/B978-0-323-39040-8.00016-X.
  • 26. Gul R.M., McGarry F.J., Processing of ultra-high molecular weight polyethylene by hot isostatic pressing, and the effect of processing parameters on its microstructure. Polymer Engineering and Science. 2004; 44(10): 1848–1857. https://doi.org/10.1002/pen.20186.
  • 27. Total Finathene® 6002 HDPE, blow molding, pipe. Technical Data Sheet by Total Petrochemicals USA Inc.
  • 28. PN-EN ISO 527-3:2019-01 Plastics – Determination of tensile properties – Part 3: Test conditions for films and plates. Polish Committee for Standardization, 2019.
  • 29. PN-EN ISO 179-1:2010 Plastics – Determination of Charpy impact properties – Part 1: Non-instrumented impact test. Polish Committee for Standardization, 2013.
  • 30. Richard J.L., Morris L.M., An introduction to mathematical statistics and its applications. Sixth Edition, Pearson Education, Inc. 2018.
  • 31. Campbell G.A. Spalding M.A., Analyzing and troubleshooting single-screw extruder. Hanser Publishers, 2021. https://doi.org/10.1016/C2019-0-01368-4.
  • 32. Macosco C.W., Rheology – Principles, Measurements and Applications. John Wiley & Sons, 1996.
  • 33. Han C.D., Rheology and processing of polymeric materials. Vol. Polymer Rheology, Oxford University Press, 2007. https://doi.org/10.1093/oso/9780195187823.001.0001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20a54bec-55cf-4082-a7a7-277ad6cba78d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.