PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A random signal generation method for microcontrollers with DACs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new method of noise generation based on software implementation of a 7-bit LFSR based on a common polynomial PRBS7 using microcontrollers equipped with internal ADCs and DACs and a microcontroller noise generator structure are proposed in the paper. Two software applications implementing the method: written in ANSI C and based on the LUT technique and written in AVR Assembler are also proposed. In the method the ADC results are used to reseed the LFSR after its each full work cycle, what improves randomness of generated data, which results in a greater similarity of the generated random signal to white noise, what was confirmed by the results of experimental research. The noise generator uses only the internal devices of the microcontroller, hence the proposed solution does not introduce hardware redundancy to the system.
Słowa kluczowe
Rocznik
Strony
675--687
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Saluja, K.K. (1987). Linear feedback shift registers theory and applications. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 4.
  • [2] Walczak, J., Stępień, R. (2012). Discrete Modeling of LFSR Registers. Elektryka , 2(222), 97-104.
  • [3] D’Alvano, F., Badra, R.E. (1996). A Simple Low-Cost Laboratory Hardware for Noise Generation. IEEE Transactions on Education, 39(2), 280-281.
  • [4] Mita, R., Palumbo, G., Pennisi, S.M., Poli, M. (2002). A Novel Pseudo Random Bit Generator for Cryptography Applications. The 9th IEEE International Conference on Electronics, Circuits and Systems, 489-492.
  • [5] Cypress Semiconductor Corporation. (2015). 8-Bit Pseudo Random Sequence Generator Datasheet, Document Number: 001-13579 Rev. *J.
  • [6] Mondal, S., Barman, A.D., Datta, A.K. (2012). ARM7 Microcontroller Based Digital PRBS Generator. International Journal of Electrical, Electronics and Computer Engineering, 1(2), 55-59.
  • [7] Walczak, J., Stępień, R. (2010). Microprocessor Based White Noise Generator. Elektryka, 2(214), 97-104.
  • [8] Babu, P., Soumya, S.S., Sudheesh, K., Sujeesh, K., Syamily, P.S. (2014). Design of a Microcontroller Based Random Number Generator. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(2), 7614-7618.
  • [9] Fimml, P. (2013). HOWTO: A Simple Random Number Generator for the ATmega1280 Microcontroller. https://ti.tuwien.ac.at/ecs/teaching/courses/mclu_2014/misc/task1-specific-stuff/rand_howto.pdf.
  • [10] Czaja, Z. (2013). Self-Testing of Analog Parts Terminated by ADCs Based on Multiple Sampling of Time Responses. IEEE Transactions on Instrumentation and Measurement, (62), 3160-3167.
  • [11] Toczek, W., Czaja, Z. (2011). Diagnosis of fully differential circuits based on a fault dictionary implemented in the microcontroller systems. Microelectronics Reliability, 8(51), 1413-1421.
  • [12] Czaja, Z. (2016). An Implementation of a Compact Smart Resistive Sensor Based on a Microcontroller with an Internal ADC. Metrol. Meas. Syst., 23(2), 255-238.
  • [13] Czaja, Z. (2012). A microcontroller system for measurement of three independent components in impedance sensors using a single square pulse. Sensors and Actuators A, (173), 284-292.
  • [14] Czaja, Z. (2018). Time-domain measurement methods for R, L and C sensors based on a versatile direct sensor-to-microcontroller interface circuit. Sensors and Actuators A, (274), 199-210.
  • [15] Jevtic, N., Vujo, Drndarevic, V. (2013). Design and implementation of plug-and-play analog resistance temperature sensor. Metrol. Meas. Syst., 20(4), 565-580.
  • [16] Kokolanski, Z., Gavrovski, C., Dimcev, V., Makraduli, M. (2013). Hardware techniques for improving the calibration performance of direct resistive sensor-to-microcontroller interface. Metrol. Meas. Syst., 20(4), 529-542.
  • [17] Microchip Technology Inc. (2017). 8-bit Atmel XMEGA AU Microcontroller, XMEGA AU MANUAL. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf.
  • [18] Tavacoli J. Silicon Driven Signal Integrity Tools. Altera (2005). ftp://ftp.altera.com/outgoing/download/education/events/2005_highspeed_altera.pdf
  • [19] Mutagi, R.N. (1996). Pseudo noise sequences for engineers. Electronics & Communication Engineering Journal, 79-87.
  • [20] Atmel Corporation. (2015). AVR Libc Reference Manual. [online] https://www.microchip.com/webdoc/AVRLibcReferenceManual/index.html.
  • [21] Atmel Corporation. (2016). AVR Assembler. [online] https://www.microchip.com/webdoc/GUIDE06F3258-483F-4A7B-B1F8-69933E029363/index.html.
  • [22] Atmel Corporation. (2016). AVR Instruction Set Manual. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-0856-AVR-Instruction-Set-Manual.pdf.
  • [23] Keysight Technologies. (2017). U2500A Series USB Modular Simultaneous Sampling Multifunction DAQ Devices - Data Sheet. https://literature.cdn.keysight.com/litweb/pdf/5991-0651EN.pdf?id=2205971.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20a514bd-9a4c-43e8-bb0e-701e26dcbc7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.