PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a numerical analysis of an innovative method for starting systems based on high temperature fuel cells. The possibility of preheating the fuel cell stacks from the cold state to the nominal working conditions encounters several limitations related to heat transfer and stability of materials. The lack of rapid and safe startup methods limits the proliferation of MCFCs and SOFCs. For that reason, an innovative method was developed and verified using the numerical analysis presented in the paper. A dynamic 3D model was developed that enables thermo-fluidic investigations and determination of measures for shortening the preheating time of the high temperature fuel cell stacks. The model was implemented in ANSYS Fluent computational fluid dynamic (CFD) software and was used for verifi cation of the proposed start-up method. The SOFC was chosen as a reference fuel cell technology for the study. Results obtained from the study are presented and discussed.
Słowa kluczowe
Rocznik
Strony
67--73
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Instytut Energetyki, Zakład Procesów Cieplnych, Augustówka 36, 02-981 Warszawa
autor
  • Instytut Energetyki, Zakład Procesów Cieplnych, Augustówka 36, 02-981 Warszawa
  • Instytut Energetyki, Zakład Procesów Cieplnych, Augustówka 36, 02-981 Warszawa
Bibliografia
  • 1. Singhal, S.C. & Kendall, K. (2003). High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier.
  • 2. Milewski, J., Swiercz, T., Badyda, K., Miller, A., Dmowski, A. & Biczel, P. (2010). The control strategy for a molten carbonate fuel cell hybrid system. Int. J. Hydrogen Energy 35(7), 2997-3000. DOI: 10.1016/j.ijhydene.2009.06.040.
  • 3. de Haart, L.G.J., Mougin, J., Posdziech, O., Kiviaho, J. & Menzler, N.H. (2009). Stack degradation in dependence of operation parameters; the real-SOFC sensitivity analysis. Fuel Cells. 9, 794-804. DOI: 10.1002/fuce.200800146.
  • 4. Jiang, Y. & Virkar, A.V. (2001). A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. J. Electrochem. Soc. 148(7), A706-A709. DOI: 10.1149/1.1375166.
  • 5. Fuel Cell Handbook 7th Edition. (2004). EG G Technical Services, Inc.
  • 6. O’Hayre, R., Cha, S.W., Colella, W. & Prinz, F. (2005). Fuel cell fundamentals. Wiley.
  • 7. Yokokawa, H. (2003). Understanding materials compatibility. Ann. Rev. Mater. Rese. 33, 581-610. DOI: 10.1146/ annurev.matsci.33.022802.093856.
  • 8. Staniforth, J. & Ormerod, R.M. (2003). Running solid oxide fuel cells on biogas. Ionics 9(5-6), 336-341. DOI: 10.1007/ BF02376583.
  • 9. Wojcik, A., Middleton, H., Damopoulos, I. & Van Heerle, J. (2003). Ammonia as a fuel in solid oxide fuel cells. J. Power Sour. 118(1-2), 342-348. DOI: 10.1016/S0378-7753(03)00083-1.
  • 10. Murray, E., Harris, S. & Jen, H. (2002). Solid Oxide Fuel Cells Utilizing Dimethyl Ether Fuel. J. Electroch. Society, 149(9), A1127-A1131. DOI: 10.1149/1.1496484.
  • 11. Vijay, P., Hosseini, S. & Tade, M. (2013). A novel concept for improved thermal management of the planar SOFC. Chem. Eng. Res. Des. 91, 560-572. DOI: http://dx.doi.org/10.1016/j.cherd.2012.09.004.
  • 12. Nakajo, A., Mueller, F., Brouwer, J., Van Herle, J. & Favart, D. (2011). Mechanical reliability and durability of SOFC stacks. Part II: Modelling of mechanical failures during ageing and cycling. Int. J. Hydrogen Energy, 37, 9269-9286. DOI: 10.1016/j.ijhydene.2012.03.023.
  • 13. Guan, W.B., Jin, L., Ma, X. & Wang, W.G. (2012). Investigation of Impactors on Cell Degradation Inside Planar SOFC Stacks. Fuel Cells. 12(6), 1085-1094. DOI: 10.1002/ fuce.201200063.
  • 14. Ferraro, M. (2015). Telecom technology. Int. Innovation. 173, 64-66.
  • 15. Jewulski, J. & Kupecki, J. (2015). Polish Patent PL404264- -A1. Warsaw, Poland.
  • 16. Wakui, T., Yokoyama, R. & Shimizu, K. (2010). Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems. Energy 35, 740-750. DOI: 10.1016/j.energy.2009.09.029.
  • 17. Kupecki, J., Jewulski, J. & Badyda, K. (2011). Selection of a fuel processing method for SOFC-based micro-CHP system. Rynek Energii. 97(6), 157-162.
  • 18. Ang, S.M.C., Fraga, E.S., Brandon, N.P., Samsatli, N.J. & Brett, D.J.L. (2011). Fuel cell systems optimisation e methods and strategies. Int. J. Hydrogen Energy 36, 14678-14703. DOI: 10.1016/j.ijhydene.2011.08.053.
  • 19. Kandepu, R., Imsland, L., Foss, B.A., Stiller, C., Thorud, B. & Bolland, O. (2007). Modeling and control of a SOFC-GTbased autonomous power system. Energy. 32, 406-417. DOI: 10.1016/j.energy.2006.07.034.
  • 20. Ferrari, M.L. (2015). Advanced control approach for hybrid systems based on solid oxide fuel cells. App. Energy145, 364-373. DOI: 10.1016/j.apenergy.2015.02.059.
  • 21. Wolowicz, M., Kupecki, J., Wawryniuk, K., Milewski, J. & Motylinski, K. (2015). Analysis of nodalization effects on the prediction error of generalized finite element method used for dynamic modeling of hot water storage tank. Arch.Thermodyn. 36, 123-138. DOI: 10.1515/aoter-2015-0025.
  • 22. Kupecki, J., Skrzypkiewicz, M., Wierzbicki, M. & Stepien, M. (2015). Analysis of a micro-CHP unit with in-series SOFC stacks fed by biogas. Energy Procedia 75, 2021-2026. DOI: 10.1016/j.egypro.2015.07.265.
  • 23. Kupecki, J. (2013). Analysis of micro-combined heat and power unit with solid oxide fuel cells. Doctoral dissertation, Warsaw University of Technology, OWPW, Poland.
  • 24. Kupecki, J., Milewski, J., Szczesniak, A., Bernat, R. & Motylinski, K. (2015). Dynamic numerical analysis of cross-, co-, and counter-current flow configurations of a 1 kW-class solid oxide fuel cell stack. Int. J. Hydrogen Energy 40(45), 15834-15844. DOI: 10.1016/j.ijhydene.2015.07.008.
  • 25. Kupecki, J., Jewulski, J. & Milewski, J. (2012). Multi-Level Mathematical Modeling of Solid Oxide Fuel Cells. In Clean Energy for Better Environment. Intech, Croatia.
  • 26. Retrieved July 21, 2014, from www.silca-online.de
  • 27. Ki, J. & Kim, D. (2010). Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process. J. Power Sour. 195, 3186-3200. DOI: 10.1016/j. jpowsour.2009.11.129.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-209676ea-b4ec-4ef1-8a42-63146b8ebbd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.