PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-Tubercle Mycobacteria and Other Contaminants in Metalworking Fluids from Small Turneries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-Tuberculous Mycobacteria (NTM) have frequently been isolated from metalworking fluids (MWFs) used in large machining industries. This paper concerns the microbial detection, particularly NTM in MWFs employed in small metalworking shops. A total of 21 samples were collected from different turneries and were tested for several microbiological parameters. A total microbial count above 106 CFU ml-1 was observed in 66.6% (14/21) of samples and none of the samples had the count <102 CFU ml-1. The dominant contaminants were Gram-negative bacteria with 90.5% (19/21) of samples revealing the presence of Pseudomonas aeruginosa. Sulfate Reducing Bacteria (SRB) were detected in 52.4% (11/21) of samples, whereas NTM were recovered from 14.3% (3/21) of samples only. Two species of NTM were identified by biochemical reactions as Mycobacterium chelonae and Mycobacterium abscessus. It was concluded that MWFs used in small turneries are usually contaminated with Gram-negative bacteria and SRB but NTM are not common contaminants of these fluids.
Rocznik
Strony
315--324
Opis fizyczny
Bibliogr. 47 poz., tab.
Twórcy
  • Abu Shaqra Medical Laboratories, Amman, Jordan
  • Department of Nutrition, Zarqa University College, Balqa Applied University, Jordan
  • Department of Allied Medical Sciences, Zarqa University College, Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan
Bibliografia
  • 1. Abu Shaqra Q.M., Hill E.C. 1986. A new approach to the ecology and corrosivity of infected metal working fluids using a gel stabilized oil emulsion model system. Proceedings; 6th International Biodeterioation Symposium. Washington, D.C., 440–447.
  • 2. Abu Shaqra Q.M., Hill E.C. 1984. Distribution of sulphate reducing bacteria in oil emulsion and its relationship to aeration and swarf. Tribol Int., 17, 31–34.
  • 3. Bakalova S., Doycheva A., Ivanova I., Groudeva V., Dimkov R. 2007. Bacterial microflora of contaminated metalworking fluids. Biotechnol Biotechnol., 21, 437–441.
  • 4. Barrow G.I., Feltham R.K.A. 2003. Cowan and Steel’s manual for the identification of medical bacteria, Third edition Cambridge University Press.
  • 5. Bennett E.O. 1957. The role of sulfate-reducing bacteria in the deterioration of cutting emulsions, Lubrication Eng., 13, 215–219.
  • 6. Bernstein D.I., Lummus Z.L., Santilli G., Siskosky J., Bernstein I.L. 1995. Machine operator’s lung. A hypersensitivity pneumonitis disorder associated with exposure to metalworking fluid aerosols. Chest, 108(1), 3, 593–594.
  • 7. Bhalla G.S., Sarao M.S., Kalra D., Bandyopadhyay K., John A.R. 2018. Methods of phenotypic identification of non-tuberculous mycobacteria. Practical Laboratory Medicine, e00107.
  • 8. Brinksmeier E., Meyer D., Huesmann-Cordes A.G., Herrmann C. 2015. Metalworking fluids—Mechanisms and performance / CIRP Annals Manufacturing Technology, 64, 605–628.
  • 9. Brookes J. 2016. Biological and chemical hazards in water-mix metalworking fluids and mists. Sheffield Hallam University. PhD thesis, 50; at: http://shura.shu.ac.uk/21507/
  • 10. Bryant J.M., Grogono D.M., Greaves D., Foweraker J., Roddick I., Inns T., et al. 2013. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet, 381, 1551–1560. https://doi.org/10.1016/S.0140-6736(13)60632-7
  • 11. Burge P.S. 2016. Hypersensitivity Pneumonitis Due to Metalworking Fluid Aerosols. Curr Allergy Asthma Rep., 16(8), 59. https://doi.org/10.1007/s11882-016-0639-0
  • 12. Burgess W.A. 1995. Recognition of health hazards in industry. A Wiley-Inter science publication, second ed., New York, 538.
  • 13. Burton C.M., Crook B., Scaife H., Evans G.S., Barber C.M. 2012. Systematic review of respiratory outbreaks associated with exposure to waterbased metalworking fluids. Ann Occup Hyg., 56(4), 374–88. https://doi.org/10.1093/annhyg/mer121.
  • 14. Cullinan P., D’Souza E., Tennant R., Barber C. 2014. Lesson of the month: extrinsic allergic (bronchiolo) alveolitis and metalworking fluids. Thorax, 69, 1059–1060.
  • 15. Cyprowski M., Piotrowska M., Zakowska Z., Szadkowska-Stanczyk I. 2007. Microbial and endotoxin contamination of water-soluble metalworking fluids. Int J Occup Med Environ Health, 20, 365–371.
  • 16. Gilbert Y., Veillette M., Duchaine C. 2010. Metalworking fluids biodiversity characterization. J Appl Microbiol., 108(2), 437–449.
  • 17. Hu Y., Yu X., Zhao D., Li R., Liu Y., Ge M., Hu H. 2017. Isolation of nontuberculous mycobacteria from soil using Middlebrook 7H10 agar with increased malachite green concentration. AMB Expr., 7, 69. https://doi.org/10.1186/s13568-017-0373-6
  • 18. International Organization for Standardization ISO. 2003. Meat and meat products mesophilic Clostridial spores, ISO/TC/34/SC 9.
  • 19. James P.L., Cannon J., Crawford L., D’Souza E., Barber C., Cowman S., Cookson W.O., Moffatt M.F., Cullinan P. 2015. Molecular detection of Mycobacterium avium in aerosolized metalworking fluids is linked to a localised outbreak of extrinsic allergic alveolitis in factory workers. Am J Respir Crit Care Med., 191, a2578.
  • 20. Kapoor R., Yadav J.S. 2012. Expanding the mycobacterial diversity of metalworking fluids (MWFs): evidence showing MWF colonization by Mycobacterium abscessus. FEMS Microbiol Ecol., 79(2), 392–399. https://doi.org/10.1111/j.1574-6941.2011.01227.x
  • 21. Khan I.U., Selvaraju S.B., Yadav J.S. 2005. Occurrence and characterization of multiple novel genotypes of Mycobacterium immunogenum and Mycobacterium chelonae in metalworking fluids. FEMS Microbiol Ecol., 54(3), 329–38. https://doi.org/10.1016/j. femsec.2005.04.009
  • 22. Lopeman R.C., Harrison J., Maya Desai M., Cox J.A.G. 2019. Mycobacterium abscessus: Environmental bacterium turned clinical nightmare. Microorganisms, Mar, 7(3), 90. https://doi.org/10.3390/microorganisms7030090
  • 23. Lucchesi E.G., Eguchi S.Y., Moraes A.M. 2012. Influence of a triazine derivative-based biocide on microbial biofilms of cutting fluids in contact with different substrate. J Ind Microbiol Biotechnol., 39(5), 743–748. https://doi.org/10.1007/s10295-011-1081-x
  • 24. Monde N., Munyeme M., Muwonge A., Muma J.B., Malama S. 2018. Characterization of non-tuberculous mycobacterium from humans and water in an Agropastoral area in Zambia. BMC Infect Dis., 18, 20. https://doi.org/10.1186/s12879-017-2939-y
  • 25. Muilenberg M.L., Berge H.A, Sweet T. 1993. Hypersensitivity pneumonitis and exposure to acid-fast bacilli in coolant aerosols. J Allergy Clin Immunol., 91, 311.
  • 26. Murat J.B., Grenouillet F., Reboux G., Penven E., Batchili A., Dalphin J.C., Thaon I., Millona L. 2012. Factors influencing the microbial composition of metalworking fluids and potential implications for machine operator’s lung. Appl Environ Microbiol., 78(1), 34–41. https://doi.org/10.1128/AEM.06230-11.
  • 27. Mycology online (Hyphomycetes) The University of Adelaide. https://mycology.adelaide.edu.au.last seen 11.3.2021.
  • 28. NIOSH. Criteria for a recommended standard. 1998. Occupational exposure to metalworking fluids, U. S. department of health and human services, National Institute for Occupational Safety and Health, Cincinnati, OH, 223.
  • 29. Park R.M. 2019. Risk assessment for metalworking fluids and respiratory outcomes. Safety and Health at Work, 10(4), 428–436.
  • 30. Passman F.J. 2008. Metalworking Fluid Microbes—What we need to know to successfully understand cause-and-effect relationships. Tribol Trans., 51(1), 110–117.
  • 31. Passman F.J., Küenzi P. 2020. Microbiology in water-miscible metalworking fluids, Tribol Trans. https://doi.org/10.1080/10402004.2020.1764684.
  • 32. Perkins S.D., Angenent L.T. 2010. Potential pathogenic bacteria in metalworking fluids and aerosols from a machining facility. FEMS Microbiol Ecol., 74, 643–654. DOI: 10.1111/j.15746941.2010.00976.x.
  • 33. Pereira A.C., Ramos B., Reis A.C., Cunha M.V. 2020. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms, 8(9), 1380. https://doi.org/10.3390/microorganisms8091380.
  • 34. Ratnatunga C.N., Lutzky V.P., Kupz A., Doolan D.L., Reid D.W., Field M., Bell S.C., Thomson R.M., Miles J.J. 2020. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol., 3. https://doi.org/10.3389/fimmu.2020.00303
  • 35. Ristola M., Arbeit R.D., von Reyn D.F., Horsburgh R.C. 2015. Isolation of Mycobacterium avium from potable water in homes and institutions of patients with HIV infection in Finland and the United States. Int J Biomed Res., 3. https://doi.org/10.1155/2015/713845.
  • 36. Sastre J., Mur P., del Potro G.M, Aguado E. 2013. Hypersensitivity pneumonitis caused by metalworking fluid. Allergologia et Immunopathologia, 41(5), 354– 355. https://doi.org/10.1016/j.aller.2012.08.005.
  • 37. Sassi M., Drancourt M. 2014. Genome analysis reveals three genomospecies in Mycobacterium abscessus, BMC Genomics, 15, 359. https://doi.org/10.1186/1471-2164-15-359.
  • 38. Sloyer J.L., Novitsky T.J., Nugent S. 2002. Rapid bacterial counts in metalworking fluids. J Ind Microbiol Biotechnol., 29, 323–324.
  • 39. Thomson R.M., Carter R., Tolson C., Coulter C., Huygens F., Hargreaves M. 2013. Factors associated with the isolation of Nontuberculous mycobacteria (NTM) from a large municipal water system in Brisbane, Australia. BMC Microbiol, 13, 89. https://doi.org/10.1186/1471-2180-13-89
  • 40. Tillie-Leblond I., Grenouillet F., Reboux G., Roussel S., Chouraki B., Lorthois C., Dalphin C., Wallaert B., Millon L. 2011. Hypersensitivity pneumonitis and metalworking fluids contaminated by mycobacteria. Eur Respir J., 37, 640–647. https://doi.org/10.1183/09031936.00195009
  • 41. Van der Gast C.J., Whiteley A.S., Lilley A.K., Knowles C.J., Thompson I.P. 2003. Bacterial community structure and function in a metal-working fluid. Environ Microbiol., 6, 453–461.
  • 42. Van Schothorst M., Renaud A.M. 1985. Malachite green pre-enrichment medium for improved salmonella isolation from heavily contaminated samples J Appl Bacteriol., 59(3), 223–230. https://doi.org/10.1111/j.1365-2672.1985.tb01783.x.
  • 43. Veillette M., Peter S., Thorne P.S., Gordon T., Duchaine C. 2004. Six-month tracking of microbial growth in a metalworking fluid after system cleaning and recharging Ann Occup Hyg., 48(6), 541–546.
  • 44. Wada A., Kono M., Kawauchi S., Takagi Y., Morikawa T., Funakoshi K. 2012. Rapid Discrimination of Gram-positive and Gramnegative bacteria in liquid samples by using NaOH, sodium dodecyl sulfate solution and flow cytometry. PLoS ONE, October; https://doi.org/10.1371/journal.pone.0047093
  • 45. Whipps C.M., Butler W.R., Pourahmad F., Watral V.G., Kent M.L. 2007. Molecular systematics support the revival of Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nom. rev., a species closely related to Mycobacterium chelonae. Int J Syst Evol Microbiol., 57, 2525–2531. https://doi.org/10.1099/ijs.0.64841-0.
  • 46. Wilson R.W., Steingrube V.A., Böttger E.C., Springer B., Brown-Elliott B.A., Vincent V., et al. 2001. Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudooutbreaks, and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol., 51, 1751–1764.
  • 47. Yadav J.S., Kahn I.U.H., Fakhari F., Soellner M.B. 2003. DNA-based methodologies for rapid detection, quantification and speciesor strain-level identification of respiratory pathogens (Mycobacteria and Pseudomonads) in metalworking fluids. Appl Occ Env Hygiene., 18, 966–975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-209649ab-ac54-46bb-85dc-07d39c09d2ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.