PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient Deep Learning Approach for Olive Disease Classification

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Olive culture is one of the most important for the Mediterranean countries. In recent years, the role of Artificial Intelligence in agriculture is increasing: its use ranges from monitoring of cultivated soil, to irrigation management, to yield prediction, to autonomous agricultural robots, to weed and pest classification and management for example by taking pictures using a standard smartphone or a unmanned aerial vehicle, and all this eases human work and makes it even more accessible. In this work, we propose a method for olive diseases classification, based on an adaptive ensemble of two EfficientNet-b0 models, that improves the state-of-the-art accuracy on a publicly available dataset by 1.6-2.6%. Both in terms of number of parameters and on number of operations, our method reduces complexity roughly by 50% and 80\% respectively, that is a level not seen in at least a decade. Due to its efficiency, this method is also embeddable into a smartphone application for real-time processing.
Rocznik
Tom
Strony
889--894
Opis fizyczny
Bibliogr. 31 poz., il.
Twórcy
  • Institute of Information Science and Technologies National Research Council Via Moruzzi 1, Pisa, Italy
  • Institute of Information Science and Technologies National Research Council Via Moruzzi 1, Pisa, Italy
  • Institute of Information Science and Technologies National Research Council Via Moruzzi 1, Pisa, Italy
Bibliografia
  • 1. J. Blázquez, “The origin and expansion of olive cultivation,” World Olive Encyclopaedia, Madrid, pp. 19–20, 1996.
  • 2. S. Valente, B. Machado, D. C. Pinto, C. Santos, A. M. Silva, and M. C. Dias, “Modulation of phenolic and lipophilic compounds of olive fruits in response to combined drought and heat,” Food chemistry, vol. 329, p. 127191, 2020.
  • 3. C. Brito, L.-T. Dinis, J. Moutinho-Pereira, and C. M. Correia, “Drought stress effects and olive tree acclimation under a changing climate,” Plants, vol. 8, no. 7, p. 232, 2019.
  • 4. S. Silva, C. Santos, J. Serodio, A. M. Silva, and M. C. Dias, “Physiological performance of drought-stressed olive plants when exposed to a combined heat–uv-b shock and after stress relief,” Functional Plant Biology, vol. 45, no. 12, pp. 1233–1240, 2018.
  • 5. L. Regni, A. M. Del Pino, S. Mousavi, C. A. Palmerini, L. Baldoni, R. Mariotti, H. Mairech, T. Gardi, R. D’Amato, and P. Proietti, “Behavior of four olive cultivars during salt stress,” Frontiers in plant science, vol. 10, p. 867, 2019.
  • 6. H. K. Obied, P. D. Prenzler, D. Ryan, M. Servili, A. Taticchi, S. Esposto, and K. Robards, “Biosynthesis and biotransformations of phenolconjugated oleosidic secoiridoids from olea europaea l.” Natural product reports, vol. 25, no. 6, pp. 1167–1179, 2008.
  • 7. A. Graniti, R. Faedda, S. O. Cacciola, and G. M. di San Lio, “19. olive diseases in a changing ecosystem,” 2011.
  • 8. L. Benos, A. C. Tagarakis, G. Dolias, R. Berruto, D. Kateris, and D. Bochtis, “Machine learning in agriculture: A comprehensive updated review,” Sensors, vol. 21, no. 11, 2021. http://dx.doi.org/10.3390/s21113758. [Online]. Available: https://www.mdpi.com/1424-8220/21/11/3758
  • 9. P. Lameski, E. Zdravevski, V. Trajkovik, and A. Kulakov, “Weed detection dataset with rgb images taken under variable light conditions,” in ICT Innovations 2017, D. Trajanov and V. Bakeva, Eds. Cham: Springer International Publishing, 2017. ISBN 978-3-319-67597-8 pp. 112–119.
  • 10. P. Lameski, E. Zdravevski, and A. Kulakov, “Weed segmentation from grayscale tobacco seedling images,” in Advances in Robot Design and Intelligent Control, A. Rodić and T. Borangiu, Eds. Cham: Springer International Publishing, 2017. ISBN 978-3-319-49058-8 pp. 252–258.
  • 11. A. Sinha and R. S. Shekhawat, “Olive spot disease detection and classification using analysis of leaf image textures,” Procedia Computer Science, vol. 167, pp. 2328–2336, 2020. http://dx.doi.org/https://doi.org/10.1016/j.procs.2020.03.285 International Conference on Computational Intelligence and Data Science. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050920307511
  • 12. S. Uğuz and N. Uysal, “Classification of olive leaf diseases using deep convolutional neural networks,” Neural Computing and Applications, vol. 33, no. 9, pp. 4133–4149, May 2021. http://dx.doi.org/10.1007/s00521-020-05235-5. [Online]. Available: https://doi.org/10.1007/s00521-020-05235-5
  • 13. “Olive dataset kernel description,” https://github.com/sinanuguz/CNN_olive_dataset, accessed: 2023-05-20.
  • 14. M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, Jun. 2019, pp. 6105–6114.
  • 15. D. W. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,” J. Artif. Intell. Res., vol. 11, pp. 169–198, 1999. doi: 10.1613/jair.614. [Online]. Available: https://doi.org/10.1613/jair.614
  • 16. K. Weiss, T. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big Data, vol. 3, 05 2016. http://dx.doi.org/10.1186/s40537-016-0043-6
  • 17. J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009. http://dx.doi.org/10.1109/CVPR.2009.5206848 pp. 248–255.
  • 18. J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Papademetris, and J. Duncan, “Adabelief optimizer: Adapting stepsizes by the belief in observed gradients,” Conference on Neural Information Processing Systems, 2020.
  • 19. H. Alshammari, G. Karim, I. Ben Ltaifa, M. Krichen, L. Ben Ammar, and M. Mahmood, “Olive disease classification based on vision transformer and cnn models,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1–10, 07 2022. http://dx.doi.org/10.1155/2022/3998193
  • 20. H. Alshammari, G. Karim, M. Krichen, L. Ben Ammar, M. Eltaib, A. Boukrara, and M. Mahmood, “Optimal deep learning model for olive disease diagnosis based on an adaptive genetic algorithm,” Wireless Communications and Mobile Computing, vol. 2022, 03 2022. http://dx.doi.org/10.1155/2022/8531213
  • 21. A. Bruno, D. Moroni, and M. Martinelli, “Efficient adaptive ensembling for image classification,” accepted for publication by Expert Systems - Wiley on 31st July 2023, arXiv preprint https://arxiv.org/abs/2206.07394, 2023.
  • 22. A. Bruno, G. Ignesti, O. Salvetti, D. Moroni, and M. Martinelli, “Efficient lung ultrasound classification,” Bioengineering, vol. 10, no. 5, 2023. http://dx.doi.org/10.3390/bioengineering10050555. [Online]. Available: https://www.mdpi.com/2306-5354/10/5/555
  • 23. A. Bruno, D. Moroni, R. Dainelli, L. Rocchi, S. Morelli, E. Ferrari, P. Toscano, and M. Martinelli, “Improving plant disease classification by adaptive minimal ensembling,” Frontiers in Artificial Intelligence, vol. 5, p. 868926, 2022.
  • 24. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” in ICLR 2021: The Ninth International Conference on Learning Representations, 2021.
  • 25. T. Ridnik, E. Ben-Baruch, A. Noy, and L. Zelnik-Manor, “Imagenet-21k pretraining for the masses,” 2021.
  • 26. P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware minimization for efficiently improving generalization,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.
  • 27. H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang, “Cvt: Introducing convolutions to vision transformers,” 2021.
  • 28. Z. Lu, G. Sreekumar, E. Goodman, W. Banzhaf, K. Deb, and V. N. Boddeti, “Neural architecture transfer,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 9, p. 2971–2989, Sep 2021. http://dx.doi.org/10.1109/tpami.2021.3052758
  • 29. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.
  • 30. R. Dainelli, M. Martinelli, A. Bruno, D. Moroni, S. Morelli, M. Silvestri, E. Ferrari, L. Rocchi, and P. Toscano, Recognition of weeds in cereals using AI architecture, ch. 49, pp. 401–407. [Online]. Available: https://www.wageningenacademic.com/doi/abs/10.3920/978-90-8686-947-3_49
  • 31. M. Massimo, “Agrosat+ project,” 2023, http://si.isti.cnr.it/index.php/hid-notcategorized-category-list/228-barilla [Accessed: 31st July 2023].
Uwagi
1. Thematic Tracks Short Papers
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-209578df-e620-4bc1-bb88-f3276e548d11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.