PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion and thermal shock resistance of metal (Cu, Al) matrix composites reinforced by SiC particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of studies concerning the production and characterization of Al-SiC/W and Cu-SiC/W composite materials with a 30% volume fraction of reinforcing phase particles as well as the influence of corrosion and thermal shocks on the properties of selected metal matrix composites. Spark plasma sintering method (SPS) was applied for the purpose of producing these materials. In order to avoid the decomposition of SiC surface, SiC powder was coated with a thin tungsten layer using plasma vapour deposition (PVD) method. The obtained results were analysed by the effect of the corrosion and thermal shocks on materials density, hardness, bending strength, tribological and thermal properties. Qualitative X-ray analysis and observation of microstructure of sample surfaces after corrosion tests and thermal shocks were also conducted. The use of PVD technique allows us to obtain an evenly distributed layer of titanium with a constant thickness of 1.5 µm. It was found that adverse environmental conditions and increased temperature result in a change in the material behaviour in wear tests.
Rocznik
Strony
1227--1236
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Łukasiewicz – Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw, Poland
autor
  • Fundación Tecnalia Research & Innovation, Department of Foundry and Steelmaking, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
autor
  • Łukasiewicz – Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw, Polan
  • Łukasiewicz – Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw, Polan
autor
  • Łukasiewicz – Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw, Polan
  • Łukasiewicz – Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw, Polan
  • Łukasiewicz – Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw, Polan
Bibliografia
  • [1] G.B. Veeresh Kumar, C.S. Rao and N. Selvaraj, “Mechanical and tribological behavior of particulate reinforced aluminium metal matrix composites – a review”, J Min & Mater Char & Eng. 10, 59‒91 (2011).
  • [2] G.F. Celebi Efe, I. Altinsoy, M. Ipek, S. Zeytin and C, Bindal, “Some properties of Cu-SiC comosites produced by powder metallurgy method”, Kovove Mater. 49, 131‒136 (2011).
  • [3] S. Bathula, R.C. Anandani, A. Dhar and A.K. Srivastava, “Micro-structural features and mechanical properties of Al5083/SiC metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering”, Mater. Sci. Eng. A. 545, 97‒102 (2012).
  • [4] A. Leifert et al., “Mechanical reinforcement of copper films with ceramic nanoparticles”, in Dev. Strateg. Mater. Compu. Des. V. 361‒366 (2015).
  • [5] E. Hong, B. Kaplin, T. You, M.S. Suh, Y.S. Kim and H. Choe, “Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles”, Wear 270, 591‒597 (2011).
  • [6] K.K. Deng et al., “Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite”, Compos. Part A-Appl. Sci. Manuf. 43, 1280‒1284 (2012).
  • [7] M. Chmielewski, K. Pietrzak, A. Strojny-Nędza, D. Jarząbek and S. Nosewicz, “Investigations of interface pproperties in copper-silicon carbide composites”, Arch. Metall. Mater. 62, 1315‒1318 (2017).
  • [8] V. Rajković, D. Bozić, M. Popović and M.T. Jovanović, “The influence of powder particle size on properties of Cu-Al2O3 composites”, Sci. Sinter. 41, 185–192 (2009).
  • [9] M. Shabana, B.L. Karihaloo, H.X. Zhu and S. Kulasegaram, “Influence of processing defects on the measured propertiesof Cu-Al2O3 composites: A forensic investigation”, Compo.: Part A. 46, 140–146 (2013).
  • [10] A. Pakdel, A. Witecka, G. Rydzel and D.N. Awang Shir, “A comprehensive microstructural analysis of Al-WC micro- and nano-composites prepared by spark plasma sinering”, Mater. Des. 119, 225‒234 (2017).
  • [11] M. Tokita, “Mechanism of spark plasma sintering”, in Japanese Society of Powder Metallurgy, Kyoto, 729‒732 (2001).
  • [12] H. Know, M. Lleparoux and A. Kawasaki, “Functionally graded dual-nanoparticulated-reinforced aluminium matrix bulk materials fabricated by spark plasma sintering”, J. Mater. Sci. Technol. 30(8), 736‒742 (2014).
  • [13] B.S.L. Prasad and R. Annamalai, “A study of molybdenum addition on W-Ni-Fe based heavy alloys sintered with spark plasma sintering”, Bull. Pol. Ac.: Tech. 67(2), 167‒172 (2019).
  • [14] M. Rodriguez-Reyes, M.I. Pech-Canul, J.C Rendon-Angeles and J. Lopez-Cuevas, “Limiting the development of Al4C 3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration”, Compos. Sci. Technol. 66, 1056–1062 (2006).
  • [15] W. Li, H. Liang, J. Chen, S.Q. Zhu and Y.L. Chen, “Effect of SiC particles on fatigue crack growth behavior of SiC particulate – reinforced Al-Si alloy composites produced by spray forming”, Procedia Mater. Sci. 3, 1694–1699 (2014).
  • [16] S. Nosewicz et al., “Experimental and numerical studies of micro- and macromechanical properties of modified copper–silicon carbide composites”, Inter. J. Solids Struc. 160, 187–200 (2019).
  • [17] T. Shubert et al., “Interfacial design of Cu/SiC composites prepared by powder metallurgy for heat sink applications”, Compps Part A-Appl. Sci. Manuf. 38, 2398–2403 (2007).
  • [18] C. Rado, B. Dreved and N. Eustathopoulos, “The role of compound formation in reactive wetting: in Cu/SiC system”, Acta Mater. 48, 4483‒4491 (2000).
  • [19] A. Brendel, C. Popescu, H. Schurmann and H. Bolt, “Interface modification of SiC-fibre/copper matrix composites by applying a titanium interlayer”, Surf. Coat. Technol. 200, 161‒164 (2005).
  • [20] S. Min, J. Blumm and A. Lindemann, “A new laser flash system for measurement of the thermophysical properties”, Thermochim. Acta 455, 46–49 (2007).
  • [21] F. Jafari, H. Sharifi, M. Reza Seari and M. Tayebi, “Effect of reinforcement volume fraction on the wear behavior of Al-SiC composites prepared by spark plasma sintering”, Silicon 10, 2473‒2481 (2018).
  • [22] H.M. Zakaria, “Microstrucural and corrosion behavior of Al/SiC metal matrix composites, Ain Shams Eng. J. 5, 831‒838 (2014).
  • [23] K.A. Lucas and H. Clarke, Corrosion of aluminum based metal matrix composites, New York, John Wiley and Sons Inc., 1993.
  • [24] D.M. Aylor and P.J. Moran, “Effect of reinforcement on the pitting behavior of aluminum-base metal matrix composites”, J. Electrochem. Soc. 132, 1277‒1281 (1985).
  • [25] Ch. Bombis et al., “Mechanical behaviour of nanocrystalline NaCl islands on Cu(111)”, Phys. Rev. Lett. 104, 185502 (2010).
  • [26] H. Lin and G.S Frankel, “Atmospheric Corrosion of Cu during constant deposition of NaCl”, J. Electrochem. Soc. 160, 336‒344 (2013).
  • [27] M. Zakaulla, A.R. Anwar Khan and P.G. Mukunda, “Effect of electroless copper coating on the corrosion behavior of aluminium based metal matrix composites reinforced with silicon carbide particles”, J. Miner. Mater. Charact. Engin. 2, 21‒25 (2014).
  • [28] N. Vasiraja and P. Nagaraj, “The effect of material gradient on the static and dynamic response of layered functionally graded material plate using finite element method”, Bull. Pol. Ac.: Tech. 67(4), 827‒838 (2019).
  • [29] M. Chmielewski et al., “Analysis of the micromechanical properties of copper-silicon carbide composites using nanoindentation measurements”, Ceram. Inter., 45(7A), 9164‒9173 (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20936df4-b7da-4bf7-856b-bc03155f588f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.