PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Binding features of N-hexadecanoylglycine on two terminations of fluorapatite (001) surface and their effect on fluorapatite flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
N-hexadecanoylglycine (C16Gly) is a newly synthesized collector, which can be used as an efficient collector for fluorapatite (FA) rather than for dolomite. To extend our knowledge regarding the C16Gly collector, the contact angle method was employed to understand the flotation selectivity of C16Gly in the FA and dolomite system. On the other hand, the possible binding models of C16Gly anion on Ca-rich and PO4-rich terminations of FA (001) surface were investigated with density functional theory calculations to reveal the interaction between the C16Gly and the FA surface. Results showed that C16Gly anion could interact with these two terminations to generate 12 low-energy configurations, including bidentate, tridentate and chelating binding models. The C16Gly anion preferred to adsorb onto the Ca-rich termination, which is caused by the weaker electrostatic repulsion force between the C16Gly anion and the PO4 groups on this termination. The adsorption of C16Gly on these terminations was more stable than that on the dolomite (104) surface, which is one of the reasons for the preferential flotation of FA from dolomite using C16Gly as a collector. These findings provide further insights into the selectivity of C16Gly during the flotation of FA and dolomite.
Rocznik
Strony
949--959
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology, Kunming 650093, China
  • dianwenliu@kust.edu.cn
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • ALMORABARRIOS, N., AUSTEN, K.F., LEEUW, N.H.D., 2009. Density Functional Theory Study of the Binding of Glycine, Proline, and Hydroxyproline to the Hydroxyapatite (0001) and (011̅0) Surfaces. Langmuir. 25, 5018-5025.
  • BARROZO, M.A.S., DOS SANTOS, M.A., SANTANA, R.C., CAPPONI, F., ATAIDE, C.H., 2010. Effect of ionic species on the performance of apatite flotation. Sep. Purif. Technol., 76, 15-20.
  • BORDES, R., HOLMBERG, K., 2011. Physical chemical characteristics of dicarboxylic amino acid-based surfactants. Colloids Surf., A. 391. 32-41.
  • CAO, Q., ZOU, H., CHEN, X., WEN, S., 2019. Flotation selectivity of N-hexadecanoylglycine in the fluorapatite–dolomite system. Miner. Eng. 131. 353-362.
  • CHEN, Y., LIU, M., CHEN, J., LI, Y., ZHAO, C., MU, X., 2018. A density functional based tight binding (DFTB+) study on the sulfidization-amine flotation mechanism of smithsonite. Appl. Surf. Sci. 458. 454-463.
  • FILIPPOV, L.O., FOUCAUD, Y., FILIPPOVA, I.V., BADAWI, M., 2018. New reagent formulations for selective flotation of scheelite from a skarn ore with complex calcium minerals gangue. Miner. Eng. 123, 85-94.
  • FOUCAUD, Y., BADAWI, M., FILIPPOV, L., FILIPPOVA, I., LEBEGUE, S., 2019a. A review of atomistic simulation methods for surface physical-chemistry phenomena applied to froth flotation. Miner. Eng. 143, 106020.
  • FOUCAUD, Y., BADAWI, M., FILIPPOV, L.O., BARRES, O., FILIPPOVA, I.V., LEBEGUE, S., 2019b. Synergistic adsorptions of Na2CO3 and Na2SiO3 on calcium minerals revealed by spectroscopic and ab initio molecular dynamics studies. Chem. 10, 9928-9940.
  • FOUCAUD, Y., BADAWI, M., FILIPPOV, L.O., FILIPPOVA, I.V., LEBEGUE, S., 2018a. Surface Properties of Fluorite in Presence of Water: An Atomistic Investigation. J. Phys. Chem. B. 122, 6829-6836.
  • FOUCAUD, Y., LEBEGUE, S., FILIPPOV, L.O., FILIPPOVA, I.V., BADAWI, M., 2018b. Molecular Insight into Fatty Acid Adsorption on Bare and Hydrated (111) Fluorite Surface. J. Phys. Chem. B. 122, 12403-12410.
  • FRANCIS, G., PAYNE, M., 1990. Finite basis set corrections to total energy pseudopotential calculations. J. Phys.: Condens. Matter. 2. 4395.
  • GE, Y.Y., GAN, S.P., ZENG, X.B., YU, Y.F., 2008. Double reverse flotation process of collophanite and regulating froth action. Trans. Nonferrous Met. Soc. China. 18. 449-453.
  • GENEYTON, A., FOUCAUD, Y., FILIPPOV, L.O., MENAD, N.E., RENARD, A., BADAWI, M., 2020. Synergistic adsorption of lanthanum ions and fatty acids for efficient rare-earth phosphate recovery: Surface analysis and ab initio molecular dynamics studies. Appl. Surf. Sci. 526, 146725.
  • HEAD, J.D., ZERNER, M.C., 1985. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 122. 264-270.
  • HERRING, J.R., FANTEL, R.J., 1993. Phosphate rock demand into the next century: Impact on wolld food supply. Nonrenewable Resour. 2. 226-246.
  • HIRVA, P., TIKKA, H.-K., 2002. Ab initio study on the interaction of anionic collectors with calcite and dolomite surfaces. Langmuir, 18. 5002-5006.
  • HU, Y., XU, Z., 2003. Interactions of amphoteric amino phosphoric acids with calcium-containing minerals and selective flotation. Int. J. Miner. Process. 72. 87-94.
  • KARLKVIST, T., PATRA, A., RAO, K.H., BORDES, R., HOLMBERG, K., 2015. Flotation selectivity of novel alkyl dicarboxylate reagents for apatite–calcite separation. J. Colloid Interface Sci. 445. 40-47.
  • PENG, C., ZHONG, Y., MIN, F., 2018. Adsorption of alkylamine cations on montmorillonite (001) surface: A density functional theory study. Appl. Clay Sci. 152. 249-258.
  • PERDEW, J.P., BURKE, K., ERNZERHOF, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77. 3865.
  • PERDEW, J.P., ZUNGER, A., 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 23. 5048.
  • PRADIP, B, R., 2003. Molecular modeling and rational design of flotation reagents. Int. J. Miner. Process. 72. 95-110.
  • PRADIP, R, B., RAO, T.K., KRISHNAMURTHY, S., VETERIVEL, R., MIELCZARSKI, J., CASES, J.M., 2002.
  • Molecular Modeling of Interactions of Alkyl Hydroxamates with Calcium Minerals. J. Colloid Interface Sci. 256. 106-113.
  • QIU, Y.Q., CUI, W.Y., LI, L.J., YE, J.J., WANG, J., ZHANG, Q., 2017. Structural, electronic properties with different terminations for fluorapatite (0 0 1) surface: A first-principles investigation. Comput. Mater. Sci. 126. 132-138.
  • RAI, B., PRADIP, 2012. Rational Design of Selective Industrial Performance Chemicals based on Molecular Modelling Computations, in: Rai, B. (Ed.), Molecular Modelling for the Design of Novel Performance Chemicals and Materials. CRC Press, 28-63.
  • SEGALL, M., LINDAN, P.J., PROBERT, M.A., PICKARD, C., Hasnip, P., Clark, S., Payne, M., 2002. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 14. 2717.
  • SIS, H., CHANDER, S., 2003. Reagents used in the flotation of phosphate ores: a critical review. Miner. Eng., 16. 577-585.
  • WANG, X., NGUYEN, A.V., MILLER, J.D., 2006. Selective attachment and spreading of hydroxamic acid-alcohol collector mixtures in phosphate flotation. Int. J. Miner. Process. 78. 122-130.
  • YANG, X., LIU, S., LIU, G., ZHONG, H., 2017. A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors. J. Ind. Eng. Chem. 46. 404-415.
  • YASHIMA, M., YONEHARA, Y., FUJIMORI, H., 2011. Experimental Visualization of Chemical Bonding and Structural Disorder in Hydroxyapatite through Charge and Nuclear-Density Analysis. J. Phys. Chem. C. 115. 25077–25087.
  • YU, J., GE, Y., GUO, X., GUO, W., 2016. The depression effect and mechanism of NSFC on dolomite in the flotation of phosphate ore. Sep. Purif. Technol. 161. 88-95.
  • ZHANG, H., HAN, C., LIU, W., HOU, D., WEI, D., 2019. The chain length and isomeric effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate. J. Mol. Liq. 276. 471-479.
  • ZHANG, J., YANG, W., WANG, J., 2005. Synthesis of N-Acylglycine Surfactants. Chem. Ind. Times. 19, 25-27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-208fbcdf-59b5-442d-b9c8-67a4b9d77228
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.