Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the most promising devices belonging to the third generation of photovoltaic technologies is dye-sensitized solar cell (DSSC). It can be considered as an economic substitute for the first and second generation of solar cells which provides relatively high conversion efficiency at low cost of material and simple manufacturing. This technology is widely developed nowadays thus it can contribute the meeting of the current and future energy demands. However, much work should be done to increase solar-electricity conversion efficiency of DSSC. It is identified that a crucial component which strongly affects the performance of the working dye-sensitized cell is dye sensitizer used to enhance the light harvesting. The adjustment of the amount of the adsorbed dye by a modification of photoelectrode immersion time in dye solution plays a crucial role. The objective of this study was to report the influence of electrode immersion time on dye-sensitized solar cells performance and to evaluate the stability of obtained cells. DSSC assemblies were prepared in the sandwich way with the working area equal to 0.8 cm2. The impact of various immersion times in N719 dye solution of the TiO2 covered photoelectrodes have been investigated. In the study, the process of encapsulation of the cells with sealant gaskets was enhanced which caused the improvement of the stability and tightness of the obtained DSSC devices. The methodological process adopted in this investigation includes measurements of current-voltage (I-V) characteristics performed right after cell preparation, and after 72 hours to evaluate the role of ageing. The characterization of the obtained solar cells was carried out under standard test conditions (STC; temperature 25°C, irradiance 100 mW/cm2, air mass AM 1.5). On the basis of I-V curves measurements, characteristic operating parameters of the obtained DSSC assemblies such as open circuit voltage (VOC), short circuit current (ISC), and maximum power point (MPP) have been established. The results of this research indicate that the time of electrode immersion in the dye solution affects strongly the DSSC performance. Thus, the control of the stage of the dye adsorption by the TiO2 layer is vitally important.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
53--60
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
autor
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
- 1. bp-stats-review-2019-full-report.pdf. 2019. 68th edition. (accessed on Apr 20, 2020).
- 2. Chowdhury F. I., Buraidah M. H., Arof A. K., Mellander B.-E., Noor I. M. 2020. Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance. Solar Energy, 196, 379–88.
- 3. Galliano S., Bella F., Piana G., Giacona G., Viscardi G., Gerbaldi C., Grätzel M., Barolo C. 2018. Finely tuning electrolytes and photoanodes in aqueous solar cells by experimental design. Solar Energy, 163, 251–55.
- 4. Gong J., Sumathy K., Qiao Q., Zhou Z. 2017. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68, 234–46.
- 5. Gong L., Liu Y., Gu X., Lu J., Zhang J., Ye Z., Chen Z., Li L. 2014. Study on the thermal stability of Gadoped ZnO thin film: A transparent conductive layer for dye-sensitized TiO2 nanoparticles based solar cells. Materials Science in Semiconductor Processing, 26, 276–81.
- 6. Grätzel M. 2005. Solar Energy Conversion by DyeSensitized Photovoltaic Cells. Inorganic Chemistry, 44(20), 6841–51.
- 7. Gulkowski S., Zdyb A., Dragan P. 2019. Experimental Efficiency Analysis of a Photovoltaic System with Different Module Technologies under Temperate Climate Conditions. Applied Sciences, 9(141), 1–13.
- 8. Höök M., Tang X. 2013. Depletion of fossil fuels and anthropogenic climate change–A review. Special Section: Transition Pathways to a Low Carbon Economy, 52, 797–809.
- 9. Hossain M. K., Mortuza A. A., Sen S. K., Basher M. K., Ashraf M. W., Tayyaba S., Mia M. N. H., Uddin M. J. 2018. A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik, 171, 507–16.
- 10. Ito S., Chen P., Comte P., Nazeeruddin M. K., Liska P., Péchy P., Grätzel M. 2007. Fabrication of screenprinting pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 15(7), 603–12.
- 11. Kabir F., Sakib S. N., Matin N. 2019. Stability study of natural green dye based DSSC. Optik, 181, 458–64.
- 12. Karim N. A., Mehmood U., Zahid H. F., Asif T. 2019. Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy, 185, 165–88.
- 13. Krawczak E., Zdyb A. 2019. The influence of the dye adsorption time on the DSSC performance. Edited by B. Kaźmierczak, P. Jadwiszczak, M. Kutyłowska, and U. Miller. E3S Web of Conferences, 100, 00040.
- 14. Krawczyk S., Nawrocka A., Zdyb A. 2018. Chargetransfer excited state in pyrene-1-carboxylic acids adsorbed on titanium dioxide nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 198, 19–26.
- 15. Kundu S., Sarojinijeeva P., Karthick R., Anantharaj G., Saritha G., Bera R., Anandan S., et al. 2017. Enhancing the Efficiency of DSSCs by the Modification of TiO2 Photoanodes using N, F and S, codoped Graphene Quantum Dots. Electrochimica Acta, 242, 337–43.
- 16. Kurz D., Nawrowski R. 2017. Analysis of the impact of thermal resistance of the roof on the performance of photovoltaic roof tiles. E3S Web of Conferences, 19, 01039.
- 17. Louwen A., Sark W. G. J. H. M. van, Faaij A. P. C., Schropp R. E. I. 2016. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nature Communications, 7(1), 13728.
- 18. Nazeeruddin Md. K., Baranoff E., Grätzel M. 2011. Dye-sensitized solar cells: A brief overview. Solar Energy, 85(6), 1172–78.
- 19. Önen T., Karakuş M. Ö., Coşkun R., Çetin H. 2019. Reaching stability at DSSCs with new type gel electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 385, 112082.
- 20. O’Regan B., Grätzel M. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. Nature, 353(6346), 737–40.
- 21. Parthiban R., Balamurugan D., Jeyaprakash B. G. 2015. Spray deposited ZnO and Ga doped ZnO based DSSC with bromophenol blue dye as sensitizer: Efficiency analysis through DFT approach. Materials Science in Semiconductor Processing, 31, 471–77.
- 22. Peng T., Xu J. 2020. Composite electrode of TiO2 particles with three kinds of crystal phases for significantly improved performance of dye-sensitized solar cells. Chemical Physics, 533, 110744.
- 23. Photovoltaic Research. https://www.nrel.gov (accessed on Apr 21, 2020).
- 24. Quintana M., Edvinsson T., Hagfeldt A., Boschloo G. 2007. Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime. The Journal of Physical Chemistry C, 111(2), 1035–41.
- 25. Rahman M. U., Xie F., Li Y., Sun X., Wei M. 2019. Grafting cobalt sulfide on graphene nanosheets as a counterelectrode for dye-sensitized solar cells. Journal of Alloys and Compounds, 808, 151701.
- 26. Shikoh A. S., Ahmad Z., Touati F., Shakoor R. A., Al-Muhtaseb S. A. 2017. Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceramics International, 43(13), 10540–45.
- 27. Singh L. K., Koiry B. P. 2018. Natural Dyes and their Effect on Efficiency of TiO2 based DSSCs: a Comparative Study. Materials Today: Proceedings, 5(1, Part 2), 2112–22.
- 28. Subalakshmi K., Senthilselvan J. 2018. Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency. Solar Energy, 171, 914–28.
- 29. Teuscher J., Marchioro A., Andrès J., Roch L. M., Xu M., Zakeeruddin S. M., Wang P., Grätzel M., Moser J.-E. 2014. Kinetics of the Regeneration by Iodide of Dye Sensitizers Adsorbed on Mesoporous Titania. The Journal of Physical Chemistry C, 118(30), 17108–15.
- 30. Ueno N., Dwijaya B., Uchida Y., Egashira Y., Nishiyama N. 2013. Synthesis of mesoporous ZnO, AZO, and BZO transparent conducting films using nonionic triblock copolymer as template. Materials Letters, 100, 111–14.
- 31. Unal F. A., Ok S., Unal M., Topal S., Cellat K., Şen F. 2020. Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells. Journal of Molecular Liquids, 299, 112177.
- 32. Wajs J., Golabek A., Bochniak R., Mikielewicz D. 2020. Air-cooled photovoltaic roof tile as an example of the BIPVT system – An experimental study on the energy and exergy performance. Energy, 197, 117255.
- 33. Zalas M., Jelak K. 2020. Optimization of platinum precursor concentration for new, fast and simple fabrication method of counter electrode for DSSC application. Optik, 206, 164314.
- 34. Zdyb A., Krawczak E., Gułkowski S. 2018. The influence of annealing on the properties of ZnO:Al layers obtained by RF magnetron sputtering. OptoElectronics Review, 26(3), 247–51.
- 35. Zdyb A., Krawczak E., Lichograj P. 2016. Characterization of ZnO:Al layers for applications in thin film solar cells. Optica Applicata, 46(2), 181–85.
- 36. Zdyb A., Krawczyk S. 2016. Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 157, 197–203.
- 37. Zhang L., Huang J., Yang J., Tang K., Ren B., Hu Y., Wang L., Wang L. 2016. The effects of thickness on properties of B and Ga co-doped ZnO films grown by magnetron sputtering. Materials Science in Semiconductor Processing, 42, 277–82.
- 38. Zidane T. E. K., Adzman M. R. B., Tajuddin M. F. N., Zali S. M., Durusu A. 2019. Optimal configuration of photovoltaic power plant using grey wolf optimizer: A comparative analysis considering CdTe and c-Si PV modules. Solar Energy, 188, 247–57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-208ca66f-18bd-4519-8dca-e9072d9c1c4a