Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The presence of low frequency components in the common mode voltage can cause harmful electromagnetic interference. A critical study on various causes of low frequency components in the common mode voltage of a space vector pulse width modulated Quasi–Zsource three–phase H–bridge voltage source inverter fed from a three–phase diode bridge rectifier is presented in this paper. The Quasi–Z–source network is utilized in boosting the rectified dc voltage which increases the overall voltage gain. The study considers the effect of boosting on the low frequency components. The input three-phase diode bridge rectifier has its influence in modulating the instantaneous common mode voltage and contributes low frequency components. The unbalanced three-phase supply can contribute additionally ac supply frequency component in the common mode voltage. The major contribution of this paper is the analytical, simulated and experiment-based study on various causes of the low frequency common mode voltages due to the combined action of the input non-ideal three phase grid, the front-end diode bridge rectifier as well as the load-end Z-source H-bridge three-phase inverter feeding a three-phase inductive load, while operated through a space vector pulse width modulation strategy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
142--160
Opis fizyczny
Bibliogr. 39 poz., tab., rys.
Twórcy
autor
- IIEST, Shibpur, Howrah, India
autor
- IIEST, Shibpur, Howrah, India
autor
- IIEST, Shibpur, Howrah, India
Bibliografia
- Acharya, B., Anirudh and John, V. (2010). Common mode DC bus filter for Active Front-End converter. Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, New Delhi, India, 20–23 December 2010. 158
- Akagi, H. and Doumoto, T. (2004). An Approach to Eliminating High-Frequency Shaft Voltage and Ground Leakage Current From an Inverter-Driven Motor. IEEE Transactions on Industry Applications, 40(4), pp. 1162–1169.
- Akagi, H. and Tamura, S. (2006).A Passive EMI Filter for Eliminating Both Bearing Current and Ground Leakage Current From an Inverter-Driven Motor. IEEE Transactions on Power Electronics,21(5), pp. 1459–1469.
- Anderson, J. and Peng, F.Z. (2008). Four quasi–ZSource inverters. In: Proceedings of the IEEE Power Electronics Specialists Conference. Greece, 15-19 June 2008.
- Cacciato, M., Consoli, A., Scarcella, G. and Testa, A. (1999). Reduction of common mode currents in PWM inverter motor drives. IEEE Transactions on Industry Applications, 35(2), pp. 469–476.
- Cacciato, M., Consoli, A., Scarcella, G., Scelba, G. and Testa, A. (2009). Modified space-vectormodulation technique for common mode currents reduction and full utilization of the DC bus. In: Proceedings of2009 24th Annual IEEE Applied Power Electronics Conference and Exposition. Washington, DC, USA, 15–19 February 2009.
- Chatterjee, D., Chakraborty, C., Mukherjee, K., and Dalapati, S. (2023a). Current Zero-crossing Shift for Compensation of Dead-time Distortion in Pulse Width Modulated Voltage Source Inverter. Power Electronics and Drives, 8 (43), pp. 84–99.
- Chatterjee, D., Chakraborty, C., and Dalapati, S. (2023b). Pulse Width Modulation Techniques in Two-level Voltage Source Inverters – State of the Art and Future Perspectives. Power Electronics and Drives, 8 (43), pp. 335–367.
- Chen, F., Burgos, R. and Boroyevich, D. (2019). A Bidirectional High–Efficiency Transformer less Converter with Common–mode Decoupling for the Interconnection of AC and DC Grids. IEEE Transactions on Power Electronics, 34(2), pp.1317–1333.
- Chen, F., Burgos, R., Boroyevich, D. and Zhang, X.(2016). Active Control of Low Frequency Common–Mode Voltage to Connect AC Utility and 380 V DC Grid. In: IEEE Application on Power Electronics Conference and Exposition (APEC). Long Beach, CA, USA, 20–24 March 2016.
- Fan, L., Liu, Z., Liang, Y., Li, H., Rao, B., Yin, S. and Jiang, D.(2023). Analysis and Utilization of Common–Mode Voltage in Inverters for Power Supply. IEEE Transactions on Power Electronics, 38(7), pp. 8811–8824.
- Gajanayake, C. J., Luo, F. L., Gooi, H. B., So, P. L. and Siow, L. K. (2010).Extended–Boost Z–Source Inverters. IEEE Transactions on Power Electronics,25(10), pp. 2642–2651.
- Hava, A. M. and Un, E. (2011). A High-Performance PWM Algorithm for Common–Mode Voltage Reduction in Three–Phase Voltage Source Inverters. IEEE Transactions on Power Electronics, 26(7), pp. 1998–2008.
- Hedayati, M. H., Acharya, A. B. and John, V. (2013). Common–Mode Filter Design for PWM RectifierBased Motor Drives. IEEE Transactions on Power Electronics,28(11), pp. 5364–5371.
- Hou, C-.C., Shih, C-.C., Cheng, P-.T. and Hava, A. M. (2013). Common–mode voltage reduction pulse width modulation techniques for three–phase grid connected converters. IEEE Transactions on Power Electronics, 28(4), pp. 1971–1979.
- Huang, J. and Shi, H. (2014).Suppressing lowfrequency components of common-mode voltage through reverse injection in three-phase inverter. IET Power Electronics, 7(6), pp. 1644–1653. 2014
- Jiang, Y., Zhang, J., Wang, Q., He, F. and Zhang, W. (2023). A Common-Mode Voltage Reduction PWM Strategy for Three–Phase Quasi–Z–Source Inverter With Optimized Switching Losses. IEEE Access.11, pp. 91891–91903.
- Jeong, Seung-Gi and Park, Min-Ho. (1991). The analysis and compensation of dead–time effects in PWM inverters. IEEE Transactions on Industrial Electronics, 38(2), pp. 108–114
- Lai, Y. S. and Shyu, F. S. (2004). Optimal commonmode voltage reduction PWM technique for inverter control with consideration of the dead–time effects part I: Basic development. IEEE Transactions on Industry Applications, 40(6), pp. 1605–1612.
- Liu, Y., Ge, B., Abu-Rub, H. and Peng, F. Z. (2014). Overview of Space Vector Modulations for ThreePhase Z-Source/Quasi-Z-Source Inverters. IEEE Transactions on Power Electronics, 29(4), pp. 2098–2108.
- Loh, P. C., Vilathgamuwa, D. M., Lai, Y. S., Chua, G. T. and Li, Y. (2005). Pulse–Width Modulation of Z–Source Inverters. IEEE Transactions on Power Electronics, 20(6), pp. 1346–1355.
- MIL-STD-461F, (2007). Requirements for the control of electromagnetic interference characteristics of subsystems and equipment, Department of defense interface standard, United States of America
- Mirzaeva, G., Carter, D., Uddin, S. M. M. and Stepien, P. (2020). Common Mode Voltage Elimination in Variable Speed Drives for Improved Electrical Safety. IEEE Transactions on Industry Applications, 56(4), pp. 4365–4374.
- Mohan, N., Underland, T. M. and Robbins, W. P. (2003). Power Electronics Converters, Applications and Design. John Wiley & Sons, pp 103–108.
- Nanda, D., Syam, P. and Mukherjee, K. (2019). Selection procedure of Z–network parameters for a SVPWM Voltage fed ZSI under varying input voltage conditions with simulated performance. In: Proceedings of 2019 IEEE Region 10 Symposium (TENSYMP).Kolkata, India, 7–9 June 2019.
- Nguyen, M.-K., Lim, Y.-C. and Cho, G.-B.(2011). Switched-Inductor Quasi-Z-Source Inverter. IEEE Transactions on Power Electronics, 26(11), pp. 3183–3190.
- Oliveira, T. R., Seleme, S. I. and Donoso-Garcia, P. F. (2017). Feed–forward active attenuation of low frequency common–mode voltages in DC micro grids. In: Proceedings of 2017 Brazilian Power Electronics Conference (COBEP). Juiz de Fora, Brazil, 19–22 November 2017.
- Peng, F. Z. (2003). Z-Source Inverter. IEEE Transactions on Industry Application. 39(2), pp. 504–510.
- Peng, F. Z., Joseph, A., Wang, J., Shen, M., Chen, L., Pan, Z., Ortiz-Rivera, E. and Huang, Y.(2005a). ZSource Inverter for Motor Drives. IEEE Transactions on Power Electronics, 20(4), pp. 857–863.
- Peng, F. Z., Shen, M. and Qian, Z. (2005b). Maximum Boost Control of the Z-Source Inverter. IEEE Transactions on Power Electronics, 20(4), pp. 833–838.
- Peng, F. Z., Yuan, X., Fang, X. and Qian, Z. (2003).ZSource Inverter for Adjustable Speed Drives. IEEE Power Electronics Letters, 1(2), pp. 33–35.
- Roomi, M. M. (2019). An Overview of Carrier-based Modulation Methods for Z-Source Inverter. Power Electronics and Drives, 4 (39), pp. 15–31. 160
- Sabat, J., Mangaraj, M., Barisal, A. K., Patra, A. K., and Chahattaray, A. K. (2022). Performance Evaluation of BB-QZSI Based DSTATCOM under Dynamic Load Condition. Power Electronics and Drives, 7 (42), pp. 43–55.
- Smolenski, R., Kempski, A., and Bojarski, J., (2010). Statistical approach to discharge bearing currents, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 29(3), pp. 647–666.
- Tan, B., Gu, Z., Shen, K. and Ding, X. (2019).Third Harmonic Injection SPWM Based on Alternating Carrier Polarity to Suppress the Common Mode Voltage. IEEE Access. 7, pp. 9805–9816.
- Tian, K., Wang, J., Wu, B., Xu, D., Cheng, Z. and Zargari, N. R. (2016). A Virtual Space Vector Modulation Technique for the Reduction of Common–Mode Voltages in Both Magnitude and Third-Order Component. IEEE Transactions on Power Electronics, 31(1), pp. 839–848.
- Ün, E. and Hava, A.M. (2009). A near-state PWM method with reduced switching losses and reduced common–mode voltage for three-phase voltage source inverters. IEEE Transactions on Industry Applications, 45(2), pp. 782–793.
- Vinnikov, D. and Roasto, I. (2011). Quasi–Z–SourceBased Isolated DC/DC Converters for Distributed Power Generation. IEEE Transactions on Industrial Electronics, 58(1), pp. 192–201.
- Zhu, N., Kang, J., Xu, D., Wu, B. and Xiao, Y.(2012). An Integrated AC Choke Design for Common–Mode Current Suppression in Neutral–Connected Power Converter Systems. IEEE Transactions on Power Electronics, 27(3), pp. 1228–1236.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20834c47-14d3-426d-9f03-c4026dd84cf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.