Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The residual stress creates deleterious effects on joint properties of dissimilar welding due to differential thermophysical properties and mechanical constraints of dissimilar thickness. Accounting of solid-state phase transformation (SSPT) through the understanding of solidification behavior enhances the prediction accuracy of residual stress. The characterization of microstructural features improves the fundamental understanding of the residual stress evaluation. An attempt is made to comprehend the dependence of heat input on phase transformation and its effect on the generation of compressive residual stress in dissimilar welding. Three distinct heat inputs of 52, 63, and 77 J/mm are considered in micro-plasma arc welding (µ-PAW) of SS316L and SS310 with thicknesses of 800 µm and 600 µm, respectively. The measurement of residual stress is performed using the X-ray diffraction (XRD) method. The variation of δferrite from 11.2 to 7.9% is analogous to the variation of average δferrite lath size from 412 to 1040 nm, where inter-dendritic spacing varies from ~ 10 µm to ~ 20 µm. The solidification mode is identified as ferritic-austenitic (FA), which results in the formation of skeletal and lathy δferrite structures. Electron Backscatter Diffraction (EBSD) results show an increase in heat input leads to an increase in low-angle grain boundaries that results in a rise in the residual stress value. The phase fraction and residual stresses are computed employing a finite element (FE) based thermal-metallurgical-mechanical (TMM) model including the effect of SSPT. The reasonable agreement between the computed and experimental measurements with a maximum error of ~ 8.5% in weld size, ~ 7.5% in peak temperature, ~ 16% in retained δferrite, ~ 17% in residual stress, and ~ 5% in distortion demonstrates the reliability of the developed model. A lower level of heat input (52 J/mm) allows the formation of a high amount of δferrite, which generates comparatively more compressive stress as a disparity in thermal expansion coefficient aids in the reduction of residual stress.
Czasopismo
Rocznik
Tom
Strony
art. no. e148, 2024
Opis fizyczny
Bibliogr. 76 poz., rys., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
autor
- Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab 144008, India
autor
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
Bibliografia
- 1. Banik SD, Kumar S, Singh PK, Bhattacharya S, Mahapatra MM. Distortion and residual stresses in thick plate weld joint of austenitic stainless steel: experiments and analysis. J Mater Process Technol. 2021;289:116944.
- 2. Ma C, Peng Q, Mei J, Han E-H, Ke W. Microstructure and corrosion behavior of the heat affected zone of a stainless steel308L–316L weld joint. J Mater Sci Technol. 2018;34:1823–34.
- 3. Durgaprasad K, Pal S, Das M. Influence of cusp magnetic field on the evolution of metallurgical and mechanical properties in GTAWof SS 304. Int J Adv Manuf Technol. 2023;126:1–16.
- 4. Lin Y-C, Chou CP. A new technique for reducing the residual stress induced by welding in type 304 stainless steel. J Mater Process Technol. 1995;48:693–8.
- 5. Haldar V, Pal S. Influence of fusion zone metallurgy on the mechanical behavior of Ni-Based superalloy and austenitic stainless steel dissimilar joint. J Mater Eng Perform. 2023. https://doi.org/10.1007/s11665-023-08335-0.
- 6. Kumar, A., Bhattacharyya, A., Pandey, C.: Structural Integrity Assessment of Inconel 617/P92 Steel Dissimilar Welds Produced Using the Shielded Metal Arc Welding Process. J. Mater. Eng. Perform. (2023).
- 7. Anawa EM, Olabi A-G. Control of welding residual stress for dissimilar laser welded materials. J Mater Process Technol. 2008;204:22–33.
- 8. Kumar R, Mahapatra MM, Pradhan AK, Giri A, Pandey C. Experimental and numerical study on the distribution of temperature field and residual stress in a multi-pass welded tube joint of Inconel 617 alloy. Int J Press Vessels Pip. 2023;206:105034.
- 9. Kumar A, Guguloth K, Pandey SM, Fydrych D, Sirohi S, PandeyC. Study on microstructure-property relationship of inconel 617Alloy/304L SS steel dissimilar welds joint. Metall Mater Trans A. 2023;54:3844–70.
- 10. Dawes, C.T.: Laser welding: a practical guide. Wood head Publishing (1992).
- 11. Kumar B, Nagamani Jaya B. Thermal stability and residual stresses in additively manufactured single and multi-material systems. Metall Mater Trans A. 2023;54:1808–24.
- 12. Akbari D, Sattari-Far I. Effect of the welding heat input on residual stresses in butt-welds of dissimilar pipe joints. Int J Press Vessels Pip. 2009;86:769–76.
- 13. Maurya AK, Chhibber R, Pandey C. Studies on residual stresses and structural integrity of the dissimilar gas tungsten arc welded joint of sDSS 2507/Inconel 625 for marine application. J Mater Sci. 2023;58:8597–634.
- 14. Hsieh C-C. Microstructural evolution and examination ofα’-martensite during a multi-pass dissimilar stainless steel GTAW process. Met Mater Int. 2008;14:643–8.
- 15. Hsieh C-C, Wu W. Phase transformation of δ→σ in multipas sheat-affected and fusion zones of dissimilar stainless steels. Met Mater Int. 2011;17:375–81.
- 16. Kianersi D, Mostafaei A, Amadeh AA. Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: phase transformations, mechanical properties and microstructure characterizations. Mater Des. 2014;61:251–63.
- 17. Harjo S, Tomota Y, Ono M. Measurements of thermal residual elastic strains in ferrite–austenite Fe–Cr–Ni alloys by neutron andX-ray diffractions. Acta Mater. 1998;47:353–62.
- 18. Thibault D, Bocher P, Thomas M, Gharghouri M, Côté M. Residual stress characterization in low transformation temperature 13%Cr–4% Ni stainless steel weld by neutron diffraction and the con-tour method. Mater Sci Eng A. 2010;527:6205–10.
- 19. Hsieh CC, Wang PS, Wang JS, Wu W. Evolution of microstructure and residual stress under various vibration modes in 304 stainless steel welds. Sci World J. 2014;2014:1–9.
- 20. Chen L, Mi G, Zhang X, Wang C. Numerical and experimental investigation on microstructure and residual stress of multi-pass hybrid laser-arc welded 316L steel. Mater Des. 2019;168:107653.
- 21. De A, DebRoy T. A perspective on residual stresses in welding. Sci Technol Weld Join. 2011;16:204–8.
- 22. Kesavan Nair P, Vasudevan R. Residual stresses of types II and III and their estimation. Sadhana. 1995;20:39–52.
- 23. Olabi, A.G., Hashmi, M.S.J.: Review of methods for measuring residual stresses in components. In: Proceedings of 9th Conf. On Manufacturing Research Sep (1993).
- 24. Deng D, Murakawa H. Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel. Comput Mater Sci. 2013;78:55–62.
- 25. Feng Z. Processes and mechanisms of welding residual stress and distortion. Woodhead Publishing: Elsevier; 2005.
- 26. Lindgren L-E. Numerical modelling of welding. Comput Methods Appl Mech Eng. 2006;195:6710–36.
- 27. Deng D. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater Des. 2009;30:359–66.
- 28. Zubairuddin M, Albert SK, Chaudhari V, Suri VK. Influence of phase transformation on thermo-mechanical analysis of modified 9Cr-1Mo steel. Procedia Mater Sci. 2014;5:832–40.
- 29. Hamelin CJ, Muránsky O, Smith MC, Holden TM, Luzin V, Bendeich PJ, Edwards L. Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments. Acta Mater. 2014;75:1–19.
- 30. Yaghi AH, Hyde TH, Becker AA, Sun W. Finite element simulation of welding and residual stresses in a P91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment. J Strain Anal Eng Des. 2008;43:275–93.
- 31. Li S, Hu L, Dai P, Bi T, Deng D. Influence of the groove shape on welding residual stresses in P92/SUS304 dissimilar metal butt-welded joints. J Manuf Process. 2021;66:376–86.
- 32. Kumar B, Bag S. Phase transformation effect in distortion andresidual stress of thin-sheet laser welded Ti-alloy. Opt Lasers Eng.2019;122:209–24.
- 33. Kumar B, Bag S, Mahadevan S, Paul CP, Das CR, Bindra KS. On the interaction of microstructural morphology with residual stressin fiber laser welding of austenitic stainless steel. CIRP J Manuf Sci Technol. 2021;33:158–75.
- 34. Taraphdar PK, Kumar R, Pandey C, Mahapatra MM. Significance of finite element models and solid-state phase transformation on the evaluation of weld induced residual stresses. Met Mater Int.2021;27:3478–92.
- 35. Kubiak M, Piekarska W. Comprehensive model of thermal phenomena and phase transformations in laser welding process. Comput Struct. 2016;172:29–39.
- 36. Mi G, Xiong L, Wang C, Hu X, Wei Y. A thermal-metallurgical-mechanical model for laser welding Q235 steel. J Mater Process Technol. 2016;238:39–48.
- 37. Ghafouri M, Ahn J, Mourujärvi J, Björk T, Larkiola J. Finite element simulation of welding distortions in ultra-high strength steel S960 MC including comprehensive thermal and solid-state phase transformation models. Eng Struct. 2020;219:110804.
- 38. Shen L, He Y, Liu D, Gong Q, Zhang B, Lei J. A novel method for determining surface residual stress components and their directions in spherical indentation. J Mater Res. 2015;30:1078–89.
- 39. Taraphdar PK, Thakare JG, Pandey C, Mahapatra MM. Novel residual stress measurement technique to evaluate through thickness residual stress fields. Mater Lett. 2020;277:128347.
- 40. Elata D, Abu-Salih S. Analysis of a novel method for measuring residual stress in micro-systems. J Micromechanics Microengineering. 2005;15:921.
- 41. Taraphdar PK, Kumar R, Giri A, Pandey C, Mahapatra MM, Sridhar K. Residual stress distribution in thick double-V butt welds with varying groove configuration, restraints and mechanical ten-sioning. J Manuf Process. 2021;68:1405–17.
- 42. Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, SharmaK, Kumar S. Effects of groove configuration and buttering layeron the through-thickness residual stress distribution in dissimil arwelds. Int J Press Vessels Pip. 2021;192:104392.
- 43. Nowacki J, Sajek A, Matkowski P. The influence of welding heatinput on the microstructure of joints of S1100QL steel in one-pass welding. Arch Civ Mech Eng. 2016;16:777–83.
- 44. Pandey C, Mahapatra MM, Kumar P. A comparative study of transverse shrinkage stresses and residual stresses in P91welded pipe including plasticity error. Arch Civ Mech Eng.2018;18:1000–11.
- 45. Saha D, Pal S. Study on the microstructural variation and fatigue performance of microplasma arc welded thin 316L sheet. Proc. Inst. Mech Eng Part J Mater Des Appl. 2022;236:880–90.
- 46. Dwibedi S, Bag S. Development of micro-plasma arc welding system for different thickness dissimilar austenitic stainless steels. J Inst Eng India Ser C. 2021;102:657–71.
- 47. Mousavi SA, Miresmaeili R. Experimental and numerical analyses of residual stress distributions in TIG welding process for 304 Lstainless steel. J Mater Process Technol. 2008;208:383–94.
- 48. Kohli D, Rakesh R, Sinha VP, Prasad GJ, Samajdar I. Fabrication of simulated plate fuel elements: defining role of stress relief annealing. J Nucl Mater. 2014;447:150–9.
- 49. Dwibedi S, Bag S. Influence of process parameters on micro-structural evolution, solidification mode and impact strength injoining of stainless steel thin sheets. Adv Mater Process Technol. 2021;8(sup3):1089–104.
- 50. Lippold, J.C., Kotecki, D.J.: Welding metallurgy and weldability of stainless steels. (2005).
- 51. Avrami M. Transformation-time relations for random distribution of nuclei kinetics of phase change II. J Chem Phys. 1940;8:212.
- 52. Feujofack Kemda BV, Barka N, Jahazi M, Osmani D. Modeling of phase transformation kinetics in resistance spot welding and investigation of effect of post weld heat treatment on weld micro-structure. Met Mater Int. 2021;27:1205–23.
- 53. Kumar B, Bag S, Paul CP, Das CR, Ravikumar R, Bindra KS. Influence of the mode of laser welding parameters on microstructural morphology in thin sheet Ti6Al4V alloy. Opt Laser Technol. 2020;131:106456.
- 54. Ahn J, He E, Chen L, Wimpory RC, Dear JP, Davies CM. Prediction and measurement of residual stresses and distortions in fibrelaser welded Ti-6Al-4V considering phase transformation. Mater Des. 2017;115:441–57.
- 55. Li Z, Feng G, Deng D, Luo Y. Investigating welding distortion of thin-plate stiffened panel steel structures by means of thermal elastic plastic finite element method. J Mater Eng Perform. 2021;30:3677–90.
- 56. Sun J, Liu X, Tong Y, Deng D. A comparative study on welding temperature fields, residual stress distributions and deformation sinduced by laser beam welding and CO2 gas arc welding. Mater Des. 2014;63:519–30.
- 57. Onink M, Brakman CM, Tichelaar FD, Mittemeijer EJ, Van der Zwaag S, Root JH, Konyer NB. The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature. Scr Metall Mater States. 1993;29:1011.
- 58. Saida K, Nishijima Y, Ogiwara H, Nishimoto K. Prediction of solidification cracking in laser welds of type 310 stainless steels. Weld Int. 2015;29:577–86.
- 59. Rong Y, Huang Y, Xu J, Zheng H, Zhang G. Numerical simulation and experiment analysis of angular distortion and residual stress in hybrid laser-magnetic welding. J Mater Process Technol. 2017;245:270–7.
- 60. Standard, A.: E230/E230M- 12. Stand. Specif. Temp.-Electro-motive Force Emf Tables Stand. Thermo couples ASTM Int. West Conshohocken Pa. (2012).
- 61. Lee Y, Nordin M, Babu SS, Farson DF. Effect of fluid Convection on dendrite arm spacing in laser deposition. Metall Mater Trans B. 2014;45:1520–9.
- 62. Ragavendran M, Vasudevan M. Laser and hybrid laser welding of type 316L (N) austenitic stainless steel plates. Mater Manuf Processes. 2020;35:922–34.
- 63. Kumar S, Shahi AS. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater Des. 2011;32:3617–23.
- 64. Yan S, Shi Y, Liu J, Ni C. Effect of laser mode on microstructure and corrosion resistance of 316L stainless steel weld joint. Opt Laser Technol. 2019;113:428–36.
- 65. Astm: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count. Practice. 1–7 (2011).
- 66. Bansal A, Sharma AK, Das S, Kumar P. On microstructure and strength properties of microwave welded Inconel 718/stainless steel (SS-316L). Proc. Inst. Mech Eng Part J Mater Des Appl. 2016;230:939–48.
- 67. Saranarayanan R, Lakshminarayanan AK, Venkatraman B. A combined full-field imaging and metallography approach to assessthe local properties of gas tungsten arc welded copper—stainless steel joints. Arch Civ Mech Eng. 2019;19:251–67.
- 68. Jiang Z, Tao W, Yu K, Tan C, Chen Y, Li L, Li Z. Comparative study on fiber laser welding of GH3535 super alloy in continuous and pulsed waves. Mater Des. 2016;110:728–39.
- 69. Jiang Z, Chen X, Li H, Lei Z, Chen Y, Wu S, Wang Y. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy. Mater Des. 2020;186:108195.
- 70. Zhang H, Xu M, Liu Z, Li C, Kumar P, Liu Z, Zhang Y. Microstructure, surface quality, residual stress, fatigue behavior and damage mechanisms of selective laser melted 304L stainless steel considering building direction. Addit Manuf. 2021;46:102147.
- 71. Zhang H, Xu M, Kumar P, Li C, Dai W, Liu Z, Li Z, Zhang Y. Enhancement of fatigue resistance of additively manufactured 304L SS by unique heterogeneous microstructure. Virtual Phys Prototyp. 2021;16:125–45.
- 72. Baruah M, Bag S. Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy. Opt Laser Technol. 2017;90:40–51.
- 73. Ishigami A, Roy MJ, Walsh JN, Withers PJ. The effect of the weldfusion zone shape on residual stress in submerged arc welding. Int J Adv Manuf Technol. 2017;90:3451–64.
- 74. Karunaratne MSA, Kyaw S, Jones A, Morrell R, Thomson RC. Modelling the coefficient of thermal expansion in Ni-based super-alloys and bond coatings. J Mater Sci. 2016;51:4213–26.
- 75. Hosseini HS, Shamanian M, Kermanpur A. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater Charact. 2011;62:425–31.
- 76. Kumar C, Das M. Exploration of parametric effect on fiber laser weldments of SS-316L by response surface method. J Mater Eng Perform. 2021;30:4583–603.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-207c3e57-2725-4092-86bd-a75c246f105d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.