Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Applications of click chemistry in modification of nucleosides and oligonucleotides
Języki publikacji
Abstrakty
Since the year 2001 new ideology of clean and simple synthesis in organic chemistry has been established. The outstanding scientists Meldal and Sharpless presented their concepts of Click Chemistry. Among the reactions chosen for this concept the reaction of Copper(I) Catalyzed Alkyne-Azide Cycloaddition (CuAAC) became the most popular one. It is the basis of syntheses employed for building blocks synthesis in medicinal chemistry and material science. Libraries of potentially pharmacologically active anticancer and antivirus compounds possessing neutral triazol linkage could be easily obtained. Remarkable efficiency of CuAAC reaction influenced on DNA- and RNAbased synthesis of novel oligonucleotides derivatives. Many of nucleic acid molecular modifications found applications in enzymatic transformation, nucleic acid hybridization, molecular tagging and gene silencing. The CuAAC reaction allows for introducing modifications into practically every region of nucleoside/nucleotide/ oligonucleotide. This includes versatile modifications of the base moiety both aiming at the base pairing ability or specific labeling of the nucleoside unit. Different conjugates (bio-, fluorescent-, affinity- or spin labels) are being attached to the base part of the nucleic acid taking advantage of the presence of azide or alkyne substituents, which can be installed without great difficulty. Labeling at the sugar part of the nucleoside can be realized at the position 2’, 3’ or 5’, the latter two giving rise to the end-labeled oligonucleotides and the 2’ position serving as the attachment point for labeling inside the oligonucleotide chain. These kind of nucleic acid modifications are very promising. Versatility of CuAAC reactions is demonstrated by numerous examples of introducing modifications into practically every reactive site of the nucleotide/oligonucleotide molecule. The review systematically presents application of the “click” technique for modification of nitrogenous base, sugar or pseudosugar moiety or phosphorus center. Possibility of creating new kind of chain linkage, devoid of negative charge and nuclease resistant is also shown. This allows to design a new class of nucleic acid analogues, similar in its DNA-mimicking properties to PNA’s.
Wydawca
Czasopismo
Rocznik
Tom
Strony
617--643
Opis fizyczny
Bibliogr. 113 poz., schem.
Twórcy
autor
- Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, Pracownia Spektrochemii Organicznej ul. Umultowska 89b, 61-614 Poznań
autor
- Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, Pracownia Spektrochemii Organicznej ul. Umultowska 89b, 61-614 Poznań
Bibliografia
- [1] H.C. Kolb, M.G. Finn, K.B. Sharpless, Angew. Chem. Int. Ed. Engl., 2001, 40, 2004.
- [2] A. Padwa, W.H. Pearson, Synthetic Applications Of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles And Natural Products, Wiley, New York 2002.
- [3] F.S. Liang, A. Brik, Y.C. Lin, J.H. Elder, C.H. Wong, Bioorg. Med. Chem., 2006, 14, 1058.
- [4] I.M. Pastor, M. Yus, Curr. Org. Chem., 2005, 9, 1.
- [5] F. Amblard, J.H. Cho, R.F. Schinazi, Chem. Rev., 2009, 109, 4207.
- [6] H.C. Kolb, K.B. Sharpless, Drug Discov. Today, 2003, 8, 1128.
- [7] M. Meldal, C.W. Tornoe, Chem. Rev., 2008, 108, 2952.
- [8] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. Int. Ed. Engl., 2002, 41, 2596.
- [9] G. de Miguel, M. Wielopolski, D.I. Schuster, M.A. Fazio, O.P. Lee, C.K. Haley, A.L. Ortiz, L. Echegoyen, T. Clark, D.M. Guldi, J. Am. Chem. Soc., 2011, 133, 13036.
- [10] M. van Dijk, M.L. Nollet, P. Weijers, A.C. Dechesne, C.F. van Nostrum, W.E. Hennink, D.T.S. Rijkers, R.M.J. Liskamp, Biomacromolecules, 2008, 9, 2834.
- [11] A.H. El-Sagheer, T. Brown, Chem. Soc. Rev., 2010, 39, 1388.
- [12] M. Dobkowski, M. Pieszko, M. Alenowicz, M. Wojciechowska, J. Ruczyński, P. Rekowski, P. Mucha, Na Pograniczu Chemii i Biologii, 2012, XXIX, 21.
- [13] M.V. Gil, M.J. Arevalo, O. Lopez, Synthesis, 2007, 11, 1589.
- [14] L. Zhang, X. Chen, K.B. Sharpless, V.V. Fokin, G. Jia, J. Am. Chem. Soc., 2005, 127, 15998.
- [15] B.C. Boren, S. Narayan, L. Rasmussen, G. Jia, V.V. Fokin, J. Am. Chem. Soc., 2008, 130, 8923.
- [16] I.S. Cho, J. Kim, D.H. Lim, H.C. Ahn, H. Kim, K.B. Lee, Y.S. Lee, Biotechnol. Lett., 2008, 30, 1901.
- [17] M.B. Miller, Y.W. Tang, Clin. Microbiol. Rev., 2009, 22, 611.
- [18] T.S. Seo, X.P. Bai, H. Ruparel, Z.M. Li, N.J. Turro, J.Y. Ju, Proc. Natl. Acad. Sci. USA, 2004, 101, 5488.
- [19] Y. Chevolot, C. Bouillon, S. Vidal, F. Morvan, A. Meyer, J.-P. Cloarec, A. Jochum, J.-P. Praly, J.-J. Vasseur, E. Souteyrand, Angew. Chem. Int. Ed. Engl., 2007, 46, 2398.
- [20] X. Liu, W. Farmerie, S. Schuster, W. Tan, Anal. Biochem., 2000, 283, 56.
- [21] K. Seio, Y. Takaku, K. Miyazaki, S. Kurohagi, Y. Masaki, A. Ohkubo, M. Sekine, Org. Biomol. Chem., 2009, 7, 2440.
- [22] J.G. Izant, H. Weintraub, Cell, 1984, 36, 1007.
- [23] E. Uhlmann, A. Peyman, Chem. Rev., 1990, 90, 543.
- [24] D. Bumcrot, M. Manoharan, V. Koteliansky, D.W.Y. Sah, Nat. Chem. Biol., 2006, 2, 711.
- [25] A. Fire, S.Q. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello, Nature, 1998, 391, 806.
- [26] J.K. Watts, G.F. Deleavey, M.J. Damha, Drug Discov. Today, 2008, 13, 842.
- [27] R.S. Geary, S.P. Henry, L.R. Grillone, Clin. Pharmacokinet., 2002, 41, 255.
- [28] J.H. Huffman, R.W. Sidwell, G.P. Khare, J.T. Witkowski, L.B. Allen, R.K. Robins, Antimicrob. Agents Ch., 1973, 3, 235.
- [29] S.I. Kim, D. Shin, H. Lee, B.Y. Ahn, Y. Yoon, M. Kim, J. Hepatol., 2009, 50, 479.
- [30] S. Khaliq, S.A. Khaliq, M. Zahur, B. Ijaz, S. Jahan, M. Ansar, Biotechnol. Adv., 2010, 28, 27.
- [31] H. Elayadi, M. Smietana, C. Pannecouque, P. Leyssen, J. Neyts, J.-J. Vasseur, H.B. Lazrek, Bioorg. Med. Chem. Lett., 2010, 20, 7365.
- [32] D.R. Corey, J. Clin. Invest., 2007, 117, 3615.
- [33] A.H. El-Sagheer, T. Brown, Proc. Natl. Acad. Sci. USA, 2010, 107, 15329.
- [34] M. Mascini, I. Palchetti, S. Tombelli, Angew. Chem. Int. Ed. Engl., 2012, 51, 1316.
- [35] K. Kaihatsu, B.A. Janowski, D.R. Corey, Chem. Biol., 2004, 11, 749.
- [36] T. Efthymiou, W. Gong, J-P. Desaulniers, Molecules, 2012, 17, 12665.
- [37] P.M.E. Gramlich, S. Warncke, J. Gierlich, T. Carell, Angew. Chem. Int. Ed. Engl., 2008, 47, 3442.
- [38] M.E. Ostergaard, D.C. Guenther, P. Kumar, B. Baral, L. Deobald, A.J. Paszczynski, P.K. Sharma, P.J. Hrdlicka, Chem. Commun., 2010, 46, 4929.
- [39] D.W. Dodd, K.N. Swanick, J.T. Price, A.L. Brazeau, M.J. Ferguson, N.D. Jones, R.H.E. Hudson, Org. Biomol. Chem., 2010, 8, 663.
- [40] F. Seela,; S.A. Ingale, J. Org. Chem., 2010, 75, 284.
- [41] H. Xiong, F. Seela, Bioconjug. Chem., 2012, 23, 1230.
- [42] A.H. El-Sagheer, Nucleos. Nucleot. Nucl., 2009, 28, 315.
- [43] M.F. Jacobsen, J.B. Ravnsbaek, K.V. Gothelf, Org. Biomol. Chem., 2010, 8, 50.
- [44] F. Seela, H. Xiong, S. Budow, Tetrahedron, 2010, 66, 3930.
- [45] Y. Saito, V. Escuret, D. Durantel, F. Zoulim, R.F. Schinazi, L.A. Agrofoglio, Bioorg. Med. Chem., 2003, 11, 3633.
- [46] K. El Akri, K. Bougrin, J. Balzarini, A. Faraj, R. Benhida, Bioorg. Med. Chem. Lett., 2007, 17, 6656
- [47] X. Ming, F. Seela, Chem. Eur. J., 2012, 18, 9590.
- [48] Z. Xiong, X.-L. Qiu, Y. Huang, F.-L. Qing, J. Fluorine Chem., 2011, 132, 166.
- [49] H. Krishna, M.H. Caruthers, J. Am. Chem. Soc., 2012, 134, 11618.
- [50] H. Peacock, O. Maydanovych, P.A. Beal, Org. Lett., 2010, 12, 1044.
- [51] E. Ohtsuka, M. Ikehara, D. Soll, Nucleic Acids Res., 1982, 10, 6553.
- [52] J.N. Wilson, E.T. Kool, Org. Biomol. Chem., 2006, 4, 4265.
- [53] A. Okamoto, Y. Saito, I. Saito, J. Photoch. Photobio. C, 2005, 6, 108.
- [54] H. Addepalli, Meena; C.G. Peng, G. Wang, Y. Fan, K. Charisse, K.N. Jayaprakash, K.G. Rajeev, R.K. Pandey, G. Lavine, L. Zhang, K. Jahn-Hofmann, P. Hadwiger, M. Manoharan, M.A. Maier, Nucleic Acids Res., 2010, 38, 7320.
- [55] P. Ding, D. Wunnicke, H.-J. Steinhoff, F. Seela, Chem. Eur. J., 2010, 16, 14385.
- [56] C. Beyer, H.-A. Wagenknecht, Chem. Commun., 2010, 46, 2230.
- [57] P. Chittepu, V.R. Sirivolu, F. Seela, Bioorg. Med. Chem., 2008, 16, 8427
- [58] S.M. Park, H. Yang, S.-K. Park, H.M. Kim, B.H. Kim, Bioorg. Med. Chem. Lett., 2010, 20, 5831.
- [59] A. Montagu, V. Roy, J. Balzarini, R. Snoeck, G. Andrei, L.A. Agrofoglio, Eur. J. Med. Chem., 2011, 46, 778.
- [60] D.G. Streeter, J.T. Witkowski, G.P. Khare, R.W. Sidwell, R.J. Bauer, R.K. Robins, L.N. Simon, Proc. Natl. Acad. Sci. USA, 1973, 70, 1174.
- [61] B.Yu, X. Zhao, L.J. Lee, R.J. Lee, AAPS J., 2009, 11, 195.
- [62] S.T. Crooke, Basic Principles of Antisense Therapeutics, Springer: Berlin/Heidelberg, Germany, 1998.
- [63] M.L. Stephenson, P.C. Zamecnik, Proc. Natl. Acad. Sci. USA, 1978, 75, 285.
- [64] G.F. Deleavey, M.J. Damha, Chem. Biol., 2012, 19, 937.
- [65] N.K. Andersen, H. Dossing, F. Jensen, B. Vester, P. Nielsen, J. Org. Chem., 2011, 76, 6177.
- [66] A.J. Gutierrez, M.D. Matteucci, D. Grant, S. Matsumura, R.W. Wagner, B.C. Froehler, Biochemistry, 1997, 36, 743.
- [67] P. Kumar, N. Chandak, P. Nielsen, P.K. Sharma, Bioorg. Med. Chem., 2012, 20, 3843.
- [68] P. Kocalka, N.K. Andersen, F. Jensen, P. Nielsen, ChemBioChem, 2007, 8, 2106.
- [69] M. Whiting, J. Muldoon, Y.C. Lin, S.M. Silverman, W. Lindstrom, A.J. Olson, H.C. Kolb, M.G. Finn, K.B. Sharpless, J.H. Elder, V.V. Fokin, Angew. Chem. Int. Ed. Engl., 2006, 45, 1435.
- [70] M. Robbins, A. Judge, I. MacLachlan, Oligonucleotides, 2009, 19, 89.
- [71] K.Y. Chang, A. Ramos, FEBS J., 2005, 272, 2109.
- [72] B. Tian, P.C. Bevilacqua, A. Diegelman-Parente, M.B. Mathews, Nat. Rev. Mol. Cell Biol., 2004, 5, 1013.
- [73] H. Peacock, E. Fostvedt, P.A. Beal, ACS Chem. Biol., 2010, 5, 1115.
- [74] G. Qing, H. Xiong, F. Seela, T. Sun, J. Am. Chem. Soc., 2010, 132, 15228.
- [75] M.N. Manalo, L.M. Perez, A. LiWang, J. Am. Chem. Soc., 2007, 129, 11298.
- [76] O. Schiemann, T.F. Prisner, Q Rev. Biophys., 2007, 40, 1.
- [77] N.G. Bushmakina, A.Y. Misharin, Synthesis-Stuttgart, 1986, 11, 966.
- [78] H. Inoue, A. Imura, E. Ohtsuka, Nippon Kagaku Kaishi, 1987, 1214.
- [79] S. Kellner, S. Seidu-Larry, J. Burhenne, Y. Motorin, M. Helm, Nucleic Acids Res., 2011, 39, 7348.
- [80] M. Koszytkowska-Stawinska, E. Mironiuk-Puchalska, T. Rowicki, Tetrahedron, 2012, 68, 214.
- [81] M. Ganesan, K.M. Muraleedharan, Nucleos. Nucleot. Nucl., 2010, 29, 91.
- [82] R. Duschinsky, E. Pleven, C. Heidelberger, J. Am. Chem. Soc., 1957, 79, 4559.
- [83] S.C. Mathew, Y. By, A. Berthault, M.-A. Virolleaud, L. Carrega, G. Chouraqui, L. Commeiras, J. Condo, M. Attolini, A. Gaudel-Siri, J. Ruf, J. Rodriguez, J.-L. Parrain, R. Guieu, Org. Biomol. Chem., 2010, 8, 3874.
- [84] M. Driowya, A. Puissant, G. Robert, P. Auberger, R. Benhida, K. Bougrin, Ultrason. Sonochem., 2012, 19, 1132.
- [85] A.S. Jorgensen, K.I. Shaikh, G. Enderlin, E. Ivarsen, S. Kumar, P. Nielsen, Org. Biomol. Chem., 2011, 9, 1381.
- [86] S.K. Singh, P. Nielsen, A.A. Koshkin, J. Wengel, Chem. Commun., 1998, 455.
- [87] J. Lin, V. Roy, L. Wang, L. You, L.A. Agrofoglio, D. Deville-Bonne, T.R. McBrayer, S.J. Coats, R.F. Schinazi, S. Eriksson, Bioorg. Med. Chem., 2010, 18, 3261.
- [88] S. Van Poecke, A. Negri, F. Gago, I. Van Daele, N. Solaroli, A. Karlsson, J. Balzarini, S. Van Calenbergh, J. Med. Chem., 2010, 53, 2902.
- [89] J.-L. Yu, Q.-P. Wu, Q.-S. Zhang, X.-D. Xi, N.-N. Liu, Y.-Z. Li, Y.-H. Liu, H.-Q. Yin, Eur. J. Med. Chem., 2010, 45, 3219.
- [90] D. Baraniak, K. Kacprzak, L. Celewicz, Bioorg. Med. Chem. Lett., 2011, 21, 723.
- [91] T. Yamada, C.G. Peng, S. Matsuda, H. Addepalli, K.N. Jayaprakash, M.R. Alam, K. Mills, M.A. Maier, K. Charisse, M. Sekine, M. Manoharan, K..G. Rajeev, J. Org. Chem., 2011, 76, 1198
- [92] V. Roy, A. Obikhod, H.-W. Zhang, S.J. Coats, B.D. Herman, N. Sluis-Cremer, L.A. Agrofoglio, R.F. Schinazi, Nucleos. Nucleot. Nucl., 2011, 30, 264.
- [93] K. Fauster, M. Hartl, T. Santner, M. Aigner, C. Kreutz, K. Bister, E. Ennifar, R. Micura, ACS Chem. Biol., 2012, 7, 581.
- [94] O. Kaczmarek, H.A. Scheidt, A. Bunge, D. Foese, S. Karsten, A. Arbuzova, D. Huster, J. Liebscher, Eur. J. Org. Chem., 2010, 1579.
- [95] S.P. Sau, P.J. Hrdlicka, J. Org. Chem., 2012, 77, 5.
- [96] K. Johansson, S. Ramaswamy, C. Ljungcrantz, W. Knecht, J. Piskur, B. Munch-Petersen, S. Eriksson, H. Eklund, Nat. Struct. Biol., 2001, 8, 616.
- [97] M. Hallek, L. Wanders, S. Strohmeyer, B. Emmerich, Ann. Hematol., 1992, 65, 1.
- [98] S. Eriksson, B. Munch-Petersen, K. Johansson, H. Eklund, Cell. Mol. Life Sci., 2002, 59, 1327.
- [99] H. Staudinger, J. Meyer, Helv. Chim. Acta, 1919, 2, 635.
- [100] R. Micura, Chem. Eur. J. 1999, 5, 2077.
- [101] M.H. Caruthers, Accounts Chem. Res. 1991, 24, 278.
- [102] E. Paredes, S.R. Das, ChemBioChem 2011, 12, 125.
- [103] A. Nuzzi, A. Massi, A. Dondoni, QSAR Comb. Sci. 2007, 26, 1191.
- [104] H. Isobe, T. Fujino, N. Yamazaki, M. Guillot-Nieckowski, E. Nakamura, Org. Lett. 2008, 10, 3729.
- [105] T. Fujino, N. Yamazaki, H. Isobe, Tetrahedron Lett. 2009, 50, 4101.
- [106] D. Chouikhi, S. Barluenga, N. Winssinger, Chem. Commun. 2010, 46, 5476.
- [107] S.A. Thomson, J.A. Josey, R. Cadilla, M.D. Gaul, C.F. Hassman, M.J. Luzzio, A.J. Pipe, K.L. Reed, D.J. Ricca, R.W. Wiethe, S.A. Noble, Tetrahedron 1995, 51, 6179.
- [108] F . Eckstein, J. Am. Chem. Soc. 1966, 88, 4292.
- [109] M. Sameiro, T. Goncalves, Chem. Rev. 2009, 109, 190.
- [110] M.D. Best, Biochemistry 2009, 48, 6571.
- [111] J.C. Jewett, C.R. Bertozzi, Chem. Soc. Rev. 2010, 39, 1272.
- [112] P. van Delft, N.J. Meeuwenoord, S. Hoogendoorn, J. Dinkelaar, H.S. Overkleeft, G.A. van der Marel, D.V. Filippov, Org. Lett. 2010, 12, 5486.
- [113] K.N. Jayaprakash, C.G. Peng, D. Butler, J.P. Varghese, M.A. Maier, K.G. Rajeev, M. Manoharan, Org. Lett., 2010, 12, 5410.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-207bd44f-85f3-49f2-8e97-477308c7f002