PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oil-assisted flotation of fine hematite using sodium oleate or hydroxamic acids as a collector

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Micro-flotation and batch flotation tests were carried out on fine (-20 µm) hematite to investigate the influences of non-polar oil when sodium oleate, octyl hydroxamic acid, or oleoyl hydroxamic acid was used as a collector. Both micro-flotation and batch flotation tests were performed using single hematite mineral and/or artificial mixed minerals (hematite:quartz = 1:1), and kerosene was utilized as the neutral oil. The experimental results showed that the addition of a kerosene emulsion benefited hematite recovery in the micro-flotation tests where a froth layer did not exist. In the batch flotation where a froth layer existed, kerosene behaved differently when used in conjunction with the three collectors. Kerosene helped improve the batch flotation when sodium oleate or oleoyl hydroxamic acid was used as a collector. However, it reduced concentrate weight yield, grade and recovery to a noticeable extent when octyl hydroxamic acid was used as a collector, especially at low dosages. In addition, single hematite batch flotation kinetics tests coupled with water recovery measurement were carried out to study the role of kerosene at different collector dosages. It was observed that water drainage and the resulting froth destabilization by kerosene was dominant at low collector dosages, especially in the flotation using octyl hydroxamic acid. At higher collector dosages, the water drainage and froth destabilization effect by kerosene was possibly counter-balanced by the higher hematite surface hydrophobicity and bubble surface tension gradient, which led to more stable froth layer.
Rocznik
Strony
1130--1145
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • The University of Alberta
autor
  • The University of Alberta
autor
  • The University of Alberta
Bibliografia
  • BARRAZA, J., GUERRERO, J., PIÑERES, J. (2013). Flotation of a refuse tailing fine coal slurry. Fuel processing technology, 106, 498-500.
  • COLLINS, D., READ, A. (1971). The treatment of slimes. Mineral Science and Engineering, 3, 19-31.
  • DAI, Z., LU, S. (1991). Hydrophobic interaction in flocculation and flotation 2. Interaction between non-polar oil drop and hydrophobic mineral particle. Colloids and Surfaces, 57(1), 61-72.
  • FINKELSTEIN, N. (1997). The activation of sulphide minerals for flotation: a review. International Journal of Mineral Processing, 52(2), 81-120.
  • FORNASIERO, D., RALSTON, J. (2005). Cu (II) and Ni (II) activation in the flotation of quartz, lizardite and chlorite. International Journal of Mineral Processing, 76(1), 75-81.
  • HANCOCK, R. (1918). The rating of concentration tests. Mining Magazine, 19, 144-145.
  • ISRAELACHVILI, J., PASHLEY, R. (1984). Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. Journal of colloid and interface science, 98(2), 500-514.
  • KLASSEN, V. I., MOKROUSOV, V. A. (1963). An introduction to the theory of flotation: Butterworths.
  • LASKOWSKI, J. (1992). Oil assisted fine particle processing Colloid Chemistry in Mineral Processing (pp. 361-394): Elsevier Amsterdam.
  • LASKOWSKI, J. (2001). Coal flotation and fine coal utilisation. Chapter 9 Particle Size Enlargement (1st ed.). New York: Amsterdam: Elsevier.
  • LI, B., TAO, D., OU, Z., LIU, J. (2003). Cyclo-microbubble column flotation of fine coal. Separation Science and Technology, 38(5), 1125-1140.
  • LIU, A., FAN, M., FAN, P. (2014). Interaction mechanism of miscible DDA–Kerosene and fine quartz and its effect on the reverse flotation of magnetic separation concentrate. Minerals Engineering, 65, 41-50.
  • LU, S., SONG, S., DAI, Z. (1988). The hydrophobic and magnetic combined aggregation of paramagnetic minerals, a new way of fine particles separation. Paper presented at the Proceedings of XVI International Mineral Processing Congress.
  • MATHUR, S., SINGH, P., MOUDGIL, B. (2000). Advances in selective flocculation technology for solid-solid separations. International Journal of Mineral Processing, 58(1), 201-222.
  • MIETTINEN, T., RALSTON, J., FORNASIERO, D. (2010). The limits of fine particle flotation. Minerals Engineering, 23(5), 420-437.
  • MITCHELL, T. K., NGUYEN, A. V., EVANS, G. M. (2005). Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation. Advances in Colloid and Interface Science, 114, 227-237.
  • NEETHLING, S., CILLIERS, J. (2002). The entrainment of gangue into a flotation froth. International Journal of Mineral Processing, 64(2-3), 123-134.
  • NEETHLING, S., CILLIERS, J. (2009). The entrainment factor in froth flotation: Model for particle size and other operating parameter effects. International Journal of Mineral Processing, 93(2), 141-148.
  • NI, X. (2013). Direct Flotation of Niobium Oxide Minerals from Carbonatite Niobium Ores: University of Alberta.
  • O'CONNOR, C., DUNNE, R. (1994). The flotation of gold bearing ores—a review. Minerals Engineering, 7(7), 839849.
  • OZKAN, A., DUDNIK, V., ESMELI, K. (2016). Hydrophobic flocculation of talc with kerosene and effects of anionic surfactants. Particulate Science and Technology, 34(2), 235-240.
  • PARSONAGE, P. (1984). Effects of slime and colloidal particles on the flotation of galena. Flotation of sulphide minerals, 111-139.
  • PASHLEY, R. M., MCGUIGGAN, P. M., NINHAM, B. W., EVANS, D. F. (1985). Attractive forces between uncharged hydrophobic surfaces: direct measurements in aqueous solution. Science, 229, 1088-1090.
  • RAO, S. R. (2004). Surface Chemistry of Froth Flotation•Reagents and Mechanisms (2nd ed. Vol. 2). New York: Kluwer Academic/Plenum Publishers.
  • RUBIO, J., CAPPONI, F., MATIOLO, E., NUNES, D., GUERRERO, C., BERKOWITZ, G. (2003). Advances in flotation of mineral fines. Paper presented at the Proceedings of the XXII International Mineral Processing Congress, CapeTown, Africa do Sul.
  • SADOWSKI, Z. (1994). A study on hydrophobic aggregation of calcite aqueous suspensions. Powder Technology, 80(2), 93-98.
  • SANTANA, R. C., FARNESE, A. C., FORTES, M. C., ATAÍDE, C. H., BARROZO, M. A. (2008). Influence of particle size and reagent dosage on the performance of apatite flotation. Separation and Purification Technology, 64(1), 815.
  • SIS, H., CHANDER, S. (2003). Reagents used in the flotation of phosphate ores: a critical review. Minerals Engineering, 16(7), 577-585.
  • SIWEK, ZEMBALA, M., POMIANOWSKI, A. (1981). A method for determination of fine-particle flotability. International Journal of Mineral Processing, 8(1), 85-88.
  • SOBHY, A., TAO, D. (2013). Nanobubble column flotation of fine coal particles and associated fundamentals. International Journal of Mineral Processing, 124, 109-116.
  • SOLARI, J. (1980). Selective dissolved air flotation of fine minerals particles. Doctor thesis, University of London– Imperial College, 292p.
  • SONG, LOPEZ-VALDIVIESO, A., DING, Y. (1999). Effects of nonpolar oil on hydrophobic flocculation of hematite and rhodochrosite fines. Powder Technology, 101(1), 73-80.
  • SONG, S., LOPEZ-VALDIVIESO, ALEJANDRO. (2002). Parametric aspect of hydrophobic flocculation technology. Mineral Processing and Extractive Metallurgy Review, 23(2), 101-127.
  • SONG, S., LOPEZ-VALDIVIESO, A., REYES-BAHENA, J., LARA-VALENZUELA, C. (2001). Floc flotation of galena and sphalerite fines. Minerals Engineering, 14(1), 87-98.
  • SONG, S., LU, S. (1994). Hydrophobic flocculation of fine hematite, siderite, and rhodochrosite particles in aqueous solution. Journal of colloid and interface science, 166(1), 35-42.
  • SONG, S., ZHANG, X., YANG, B., LOPEZ-MENDOZA, A. (2012). Flotation of molybdenite fines as hydrophobic agglomerates. Separation and Purification Technology, 98, 451-455.
  • WANG, D. (2016). Collectors for Nonsulfide Minerals Flotation Reagents: Applied Surface Chemistry on Minerals Flotation and Energy Resources Beneficiation (pp. 69-113): Springer.
  • YE, Y., MILLER, J. (1988). Bubble/particle contact time in the analysis of coal flotation. Coal Perparation, 5(3-4), 147166.
  • YOON, R., LUTTRELL, G., ADEL, G., MANKOSA, M. (1989). Recent advances in fine coal flotation. Advances in Coal and Mineral Processing Using Flotation, 211-218.
  • ZANIN, M., AMETOV, I., GRANO, S., ZHOU, L., SKINNER, W. (2009). A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit. International Journal of Mineral Processing, 93(3), 256-266.
  • ZHENG, X., JOHNSON, N., FRANZIDIS, J.-P. (2006). Modelling of entrainment in industrial flotation cells: water recovery and degree of entrainment. Minerals Engineering, 19(11), 1191-1203.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2079b98f-9673-4275-bf7b-36e10cfd0b22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.