PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiolytic synthesis of gold nanoparticles in HEMA-based hydrogels : potentialities for imaging nanocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH-2020 (04–07.10.2020; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
This article reports on the radiolytic synthesis of nanocomposites containing gold nanoparticles (AuNPs) within two types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA): (i) plain networks with various contents in ethylene glycol dimethacrylate (EGDMA), as a cross-linker and (ii) stimuli-responsive (SR) networks prepared from these monomers copolymerized with [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MADQUAT) to confer pH-switchable swelling. Hydrogels were prepared by photopolymerization with well-defi ned composition and a high degree of monomer conversion using two experimental procedures, as xerogels or in aqueous solution. Besides MADQUAT, acrylic acid (AA) or N-isopropylacrylamide have been tested as copolymers, yielding pH- or temperature-sensitive hydrogels, respectively. Isothermal swelling in water was affected by monomer composition. Electron beam (EB) irradiation at doses up to 100 kGy of poly(HEMA) xerogels and water-swollen networks prepared with 0.5 wt% of EGDMA had a moderate impact on swelling characteristics and thermomechanical properties of the plain materials, whereas small amounts of extractables were formed. Poly(HEMA)-based nanocomposites containing AuNPs were successfully obtained by EB irradiation of samples swollen by aqueous solutions of Au(III). The effects of dose and cross-linking density on the formation of AuNPs were monitored by UV-visible spectroscopy. Irradiation at well-defined temperatures of the Au(III)-loaded SR hydrogels induced the formation of nanoparticles with size-dependent features, whereas the efficiency of Au(III) reduction at 10 kGy was not significantly affected by the network structure. EB-induced reduction of Au(III) in poly(HEMA) hydrogels using a lead mask to generate well-defined patterns yielded coloured and long-lasting images in the zones where the nanocomposite was formed.
Czasopismo
Rocznik
Strony
165--177
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Université de Reims Champagne-Ardenne Institut de Chimie Moléculaire de Reims CNRS UMR 7312, BP 1039, 51687 Reims Cedex 2, France
  • Lodz University of Technology Faculty of Chemistry Institute of Applied Radiation Chemistry Wroblewskiego 15 Str., 93-590, Lodz, Poland
  • Université de Reims Champagne-Ardenne Institut de Chimie Moléculaire de Reims CNRS UMR 7312, BP 1039, 51687 Reims Cedex 2, France
  • Lodz University of Technology Faculty of Chemistry Institute of Applied Radiation Chemistry Wroblewskiego 15 Str., 93-590, Lodz, Poland
  • Lodz University of Technology Faculty of Chemistry Institute of Applied Radiation Chemistry Wroblewskiego 15 Str., 93-590, Lodz, Poland
  • Université de Reims Champagne-Ardenne Institut de Chimie Moléculaire de Reims CNRS UMR 7312, BP 1039, 51687 Reims Cedex 2, France
Bibliografia
  • 1. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107(3), 668–677.
  • 2. Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantumsize-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104(1), 293–346.
  • 3. García, M. A. (2011). Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D-Appl. Phys., 44(28), 283001.
  • 4. Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discus. Faraday Soc., 11, 55–75.
  • 5. Huang, H. H., Yan, F. Q., Kek, Y. M., Chew, C. H., Xu, G. Q., Ji, W., & Tang, S. H. (1997). Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir, 13(2), 172–175.
  • 6. Sato-Berrú, R., Redón, R., Vázquez Olmos, A., & Saniger, J. M. (2009). Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy. J. Raman Spectrosc., 40(4), 376–380.
  • 7. Sánchez-Iglesias, A., Pastoriza-Santos, I., Pérez-Juste, J., Rodríguez-González, B., Garcia de Abajo, F. J., & Liz-Marzán, L. M. (2006). Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater., 18(19), 2529–2534.
  • 8. Belloni, J., Mostafavi, M., Remita, H., Marignier, J. L., & Delcourt, M. O. (1998). Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids. New J. Chem., 22(11), 1239–1255.
  • 9. Abedini, A., Daud, A. R., Hamid, M. A. A., Othman, N. K., & Saion, E. (2013). A review on radiationinduced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett., 8(1), 474.
  • 10. Henglein, A. (1999). Radiolytic preparation of ultrafi ne colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir, 15(20), 6738–6744.
  • 11. Gachard, E., Remita, H., Khatouri, J., Keita, B., Nadjo, L., & Belloni, J. (1998). Radiation-induced and chemical formation of gold clusters. New J. Chem., 22(11), 1257–1265.
  • 12. Tagawa, S., Hayashi, N., Yoshida, Y., Washio, M., & Tabata, Y. (1989). Pulse radiolysis studies on liquid alkanes and related polymers. Int. J. Radiat. Appl. Instrum. C-Radiat. Phys. Chem., 34(4), 503–511.
  • 13. Kapoor, S., Lawless, D., Kennepohl, P., Meisel, D., & Serpone, N. (1994). Reduction and aggregation of silver ions in aqueous gelatin solutions. Langmuir, 10(9), 3018–3022.
  • 14. Goldenberg, L. M., Sakhno, O. V., Smirnova, T. N., Helliwell, P., Chechik, V., & Stumpe, J. (2008). Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation. Chem. Mat., 20(14), 4619–4627.
  • 15. Pardo Yissar, V., Gabai, R., Shipway, A. N., Bourenko,T., & Willner, I. (2001). Gold nanoparticle/hydrogel composites with solvent switchable electronic properties. Adv. Mater., 13(17), 1320–1323.
  • 16. Wang, C., Flynn, N. T., & Langer, R. (2004). Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater., 16(13), 1074–1079.
  • 17. Marić, I., Vujičić, N. Š., Pustak, A., Gotić, M., & Jurkin, T. (2020). One-step synthesis of poly (ethylene oxide)/gold nanocomposite hydrogels and suspensions using gamma-irradiation. Radiat. Phys. Chem., 170, 108657.
  • 18. Bond, G. C., & Thompson, D. T. (2000). Goldcatalysed oxidation of carbon monoxide. Gold Bull., 33(2), 41–50.
  • 19. Belloni, J. (2006). Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal. Today, 113(3/4), 141–156.
  • 20. Evanoff Jr, D. D., & Chumanov, G. (2005). Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem, 6(7), 1221–1231.
  • 21. Vô, K. D. N., Kowandy, C., Dupont, L., & Coqueret, X. (2015). Evidence of chitosan-mediated reduction of Au(III) to Au(0) nanoparticles under electron beam by using OH and eaq scavengers. Chem. Commun., 51(19), 4017–4020.
  • 22. Li, T., Park, H. G., & Choi, S. H. (2007). -Irradiationinduced preparation of Ag and Au nanoparticles and their characterizations. Mater. Chem. Phys., 105(2/3), 325–330.
  • 23. Zhu, C. -H., Hai, Z. -B., Cui, C. -H., Li, H. -H., Chen, J. -F., & Yu, S. -H. (2012). In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small, 8(6), 930–936.
  • 24. Kumaraswamy, S., & Mallaiah, S. H. (2016). Swelling and mechanical properties of radiation crosslinked Au/PVA hydrogel nanocomposites. Radiat. Eff. Defects Solids, 171(11/12), 869–878.
  • 25. Kumaraswamy, S., Srikanth, L. P., & Somashekarappa, H. M. (2020). Swelling and cytocompatibility studies of Au/PVA hydrogel nanocomposites synthesized using gamma irradiation technique. AIP Conf. Proc., 2244, art. no. 070005.
  • 26. Kumar, M., Varshney, L., & Francis, S. (2005). Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix. Radiat. Phys. Chem., 73(1), 21–27.
  • 27. Henríquez, C. M. G., Guerra, G. D. C. P., Vallejos,M. A. S., de la Fuente, S. D. R., Flores, M. T. U., & Jimenez, L. M. R. (2014). In situ silver nanoparticle formation embedded into a photopolymerized hydrogel with biocide properties. J. Nanostructure Chem., 4(4), 119–132.
  • 28. Krklješ, A. N., Marinović-Cincović, M. T., KacarevicPopovic, Z. M., & Nedeljković, J. M. (2007). Radiolytic synthesis and characterization of Ag-PVA nanocomposites. Eur. Polym. J., 43(6), 2171–2176.
  • 29. Krklješ, A., Nedeljković, J. M., & Kačarević-Popović, Z. M. (2007). Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polymer Bull., 58(1), 271–279.
  • 30. Jovanović, Ž., Krklješ, A., Stojkovska, J., Tomić, S.,Obradović, B., Mišković-Stanković, V., & KačarevićPopović, Z. (2011). Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat. Phys. Chem., 80(11), 1208–1215.
  • 31. Schulz, G. V., & Harborth, G. (1947). The mechanism of the explosive polymerization of methyl methacrylate. Die Makromolekulare Chemie, 1(1), 106–139.
  • 32. Flory, P. J. (1953). Principles of polymer chemistry. Ithaca, NY: Cornell University Press.
  • 33. Campan, R., Cazaux, F., & Coqueret, X. (2002). Controlled swelling of poly(hydroxyethyl methacrylate) hydrogels by photochemical grafting of hydrophobic acrylates. Macromol. Mater. Eng., 287(12), 924–930.
  • 34. Olejniczak, J., Rosiak, J., & Charlesby, A. (1991). Gel/dose curves for polymers undergoing simultaneous crosslinking and scission. Radiat. Phys. Chem.,37(3), 499–504.
  • 35. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O–) in aqueous solutions. J.Phys. Chem. Ref. Data, 17(2), 513–886.
  • 36. Ilavský, M., Fähnrich, J., Nedbal, J., & Bouchal, K.(1996). Swelling and photoelastic behaviour of ionized hydrogels of poly(acrylic acid). Polymer Bull., 37, 791–798.
  • 37. Serjeant, E. P., & Dempsey, B. (1979). Ionisation constants of organic acids in aqueous solution. New York: Pergamon Press. (IUPAC Chemical Data Series No. 23).
  • 38. Oosawa, F. (1971). Polyelectrolytes. New York: Marcel Dekker.
  • 39. Schild, H. G., & Tirrell, D. A. (1990). Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem., 94, 4352–4356.
  • 40. Alexander, P., Charlesby, A., & Ross, M. (1954). The degradation of solid polymethylmethacrylate by ionizing radiation. Proc. R. Soc. London Ser. A-Math.Phys. Sci., 223(1154), 392–404.
  • 41. Choi, J. O., Moore, J. A., Corelli, J. C., Silverman, J. P., & Bakhru, H. (1988). Degradation of poly(methyl methacrylate) by deep ultraviolet, X-ray, electron beam, and proton beam irradiations. J. Vac. Sci. Technol. B, 6(6), 2286–2289.
  • 42. Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 5(1), 23–36.
  • 43. Dey, G. R., El Omar, A. K., Jacob, J. A., Mostafavi, M., & Belloni, J. (2011). Mechanism of trivalent gold reduction and reactivity of transient divalent and monovalent gold ions studied by gamma and pulse radiolysis. J. Phys.Chem. A, 115, 383–391.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2070fc05-8ef1-4761-bd48-85b22fbbbc06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.