PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design and development of original WSN sensor for suspended particulate matter measurements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper comprehensively presents key issues in design of an original optoelectronic measurement device built to assess amount of suspended particulate matter. The paper is introduced with a short explanation of concerns with a suspended particulate matter, what role it has in the air quality and how it affects health of human population. Then, problems of construction of the measurement device supported by a theoretical explanation on the basis of Mie theory are discussed. Subsequently, it is followed by an analysis of the device operation both in laboratory and in real conditions. Results obtained with the presented device are compared with the professional measurement equipment and an expensive, outdoor measurement station. Paper is concluded with observations of differences in spatio-temporal PM change at very close but significantly different city locations.
Twórcy
autor
  • Warsaw University of Technology, Institute of Theory of Electrical Engineering, Measurement and Information Systems, 75 Koszykowa St., 00-662, Warsaw, Poland
  • Warsaw University of Technology, Institute of Theory of Electrical Engineering, Measurement and Information Systems, 75 Koszykowa St., 00-662, Warsaw, Poland
autor
  • Military University of Technology, 2 Kaliskiego St., 00-908, Warsaw, Poland
Bibliografia
  • [1] J.O. Anderson, J.G. Thundiyil, A. Stolbach, Clearing the air: a review of the effects of particulate matter air pollution on human health, J. Med. Toxicol. 8 (2012) 166–175, http://dx.doi.org/10.1007/s13181-011-0203-1.
  • [2] World Health Organization (Ed.), Who Guidelines for Indoor Air Quality: Selected Pollutants, WHO, Copenhagen, 2010.
  • [3] Ambient (outdoor) air quality and health, 2016.https://www.who.int/newsroom/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (Accessed 28 June 2019).
  • [4] Explore air pollution data, European Environment Agency. 2016. https://www.eea.europa.eu/themes/air/explore-air-pollution-data (Accessed 28 June 2019).
  • [5] D. Brook Robert, Rajagopalan Sanjay, Pope C. Arden, R. Brook Jeffrey, Bhatnagar Aruni, V. Diez-Roux Ana, Holguin Fernando, Hong Yuling, V. Luepker Russell, A. Mittleman Murray, Peters Annette, Siscovick David, C. Smith Sidney, Whitsel Laurie, D. Kaufman Joel, Particulate matter air pollution and cardiovascular disease, Circulation 121 (2010) 2331–2378, http://dx.doi.org/10.1161/CIR.0b013e3181dbece1.
  • [6] B.L.V. Drooge, D.R. García, S. Lacorte, Analysis of organophosphorus flame retardants in submicron atmospheric particulate matter (PM1), Environmental 5 (2018) 294–7304, http://dx.doi.org/10.3934/environsci.2018.4.294.
  • [7] M. Kraus, I.J. Senitková, Particulate matter mass concentration in residential prefabricated buildings related to temperature and moisture, IOP Conf. Ser.: Mater. Sci. Eng. 245 (2017) 042068, http://dx.doi.org/10.1088/1757-899X/245/4/042068.
  • [8] Y. Zhang, Z. Li, Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation, Remote Sens. Environ. 160 (2015) 252–262, http://dx.doi.org/10.1016/j.rse.2015.02.005.
  • [9] M. Sowden, U. Mueller, D. Blake, Review of surface particulate monitoring of dust events using geostationary satellite remote sensing, Atmos. Environ. 183 (2018) 154–164, http://dx.doi.org/10.1016/j.atmosenv.2018.04.020.
  • [10] A. Hys, J. Dumańska, K. Tworek, Stężenie pyłów zawieszonych PM10 w Polsce w 2015 roku – porównanie danych z serwisu CAMS programu Copernicus z danymi Głównego Inspektoratu Ochrony Środowiska, Metrologia i Probiernictwo – Biuletyn Głównego Urzedu Miar. (2018) 12–19 (In Polish).
  • [11] T. Sayahi, A. Butterfield, K.E. Kelly, Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors, Environ. Pollut. 245 (2019) 932–940, http://dx.doi.org/10.1016/j.envpol.2018.11.065.
  • [12] K.E. Kelly, J. Whitaker, A. Petty, C. Widmer, A. Dybwad, D. Sleeth, R. Martin, A. Butterfield, Ambient and laboratory evaluation of a low-cost particulate matter sensor, Environ. Pollut. 221 (2017) 491–500, http://dx.doi.org/10.1016/j.envpol.2016.12.039.
  • [13] K. Gecova, D. Vala, Z. Slanina, W. Walendziuk, in: R.S. Romaniuk, M. Linczuk (Eds.), Air Condition Sensor on KNX Network, Wilga, Poland, 2017, p. 104455U, http://dx.doi.org/10.1117/12.2280810.
  • [14] A. Stachno, M. Suproniuk, Environmental performance measurement system designed for forecasting in intelligent buildings, Przeglad Elektrotechniczny 89 (2013) 152–155.
  • [15] D. Liu, Q. Zhang, J. Jiang, D.-R. Chen, Performance calibration of low-cost and portable particular matter (PM) sensors, J. Aerosol Sci. 112 (2017) 1–10, http://dx.doi.org/10.1016/j.jaerosci.2017.05.011.
  • [16] J. Wojtas, T. Stacewicz, Z. Bielecki, B. Rutecka, R. Medrzycki, J. Mikolajczyk, Towards optoelectronic detection of explosives, Opto-Electron. Rev. 21 (2013) 210–219, http://dx.doi.org/10.2478/s11772-013-0082-x.
  • [17] B. Andò, S. Baglio, G. Di Pasquale, A. Pollicino, S. Graziani, C. Gugliuzzo, C. Lombardo, V. Marletta, Direct printing of a multi-layer sensor on pet substrate for CO2 detection, Energies 12 (2019) 557, http://dx.doi.org/10.3390/en12030557.
  • [18] L. Makowski, Low-cost laboratory stand for turbidity measurements, Elektron. Elektrotech. 22 (1) (2016) 49–52, http://dx.doi.org/10.5755/j01.eie.22.1.14108.
  • [19] H. Hojaiji, H. Kalantarian, A.A.T. Bui, C.E. King, M. Sarrafzadeh, Temperature and humidity calibration of a low-cost wireless dust sensor for real-time monitoring, 2017 IEEE Sensors Applications Symposium (SAS) (2017) 1–6, http://dx.doi.org/10.1109/SAS.2017.7894056.
  • [20] A. Bain, A. Rafferty, T.C. Preston, Determining the size and refractive index of single aerosol particles using angular light scattering and Mie resonances, J. Quant. Spectrosc. Radiat. Transf. 221 (2018) 61–70, http://dx.doi.org/10.1016/j.jqsrt.2018.09.026.
  • [21] ISO 5167-1:2003(en), Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 1: General principles and requirements, 2003. https://www.iso.org/obp/ui/#iso:std:iso:5167:-1:ed-2:v1:en (Accessed 28 June 2019).
  • [22] R. Giere, X. Querol, Solid particulate matter in the atmosphere, Elements 6 (2010) 215–222, http://dx.doi.org/10.2113/gselements.6.4.215.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-206b79e5-2b0a-45a3-af2b-79573a32952f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.