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ON A DENSE MINIMIZER OF EMPIRICAL RISK
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Abstract. Properties of estimators of a functional parameter in an inverse problem setup
are studied. We focus on estimators obtained through dense minimization (as opposed to
minimization over δ-nets) of suitably defined empirical risk. At the cost of imposition of
a sort of local finite-dimensionality assumption, we fill some gaps in the proofs of results
published by Klemelä and Mammen [Ann. Statist. 38 (2010), 482–511]. We also give examples
of functional classes that satisfy the modified assumptions.
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1. INTRODUCTION

Following Klemelä and Mammen (cf., [8, 9]), we consider estimation of a function
f : Rd → R when an i.i.d. sample Y1, . . . , Yn from a density Af is observed, where
Yi’s take values in a linear measure space (Y,Σ, µ), the density Af is taken w.r.t. µ,
A : L2(Rd, λd) → L2(Y, µ) is a linear, invertible operator, λd stands for the stan-
dard d-dimesional Lebesgue measure and f is assumed to belong to some class
F ⊂ L2(Rd, λd). This is a form of a statistical inverse problem. Following [4] and [9],
we define the empirical risk functional as

γn(g) = − 2
n

n∑
i=1

(Qg)(Yi) + ‖g‖2
2,

where Q is the adjoint of the inverse of A and ‖ · ‖2 stands for the L2-norm, and
study estimators defined as minimizers of this functional over F . They are called dense
minimizers, as opposed to the minimizers over a δ-net in F . It is easily seen that with
γ(Y, g) = −2(Qg)(Y ) + ‖g‖2

2 one has Eγ(Y1, g) = ‖g − f‖2
2 − ‖f‖2

2 and, consequently,
f = argming Eγ(Y1, g). This means that γ(Y, g) is a contrast function, γn(·) may be
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viewed as an empirical contrast functional and its minimizer over F as a minimum
contrast estimator with the corresponding natural L2-estimation loss (cf., e.g., [1]).
From the statistical learning theory point of view, Eγ(Y1, g) is the risk functional and
γn(·) is the empirical L2-risk functional (cf., e.g., [14, p. 18]).

Both dense and δ-net minimizers have been studied in [9] and claimed to be
rate-minimax estimators under some regularity assumptions. However, the proofs of
the results for the dense minimizer seem to have some gaps. We fix the problems under
somewhat strengthened assumptions.

Let us recall that obtaining optimal estimators as elements of suitably constructed
δ-nets has a long tradition dating back to [11]. The regularizing effect of δ-net discretiza-
tions is known to be important in non-parametric, especially inverse, problems, if the
estimators are obtained as minimizers of some functionals over infinite-dimensional pa-
rameter spaces. Minimax convergence rates have been proved, e.g., for non-parametric
minimum distance δ-net estimators in the L1-setup in [15] and [12], and in a general,
loss-based, or minimum contrast formulation in [13]. On the other hand, it has been
shown in [1] that, in a quite general setup, (dense) minimum contrast estimators may
achieve minimax convergence rate as long as the entropy function is regular enough
and not too large. If the entropy function becomes too large, suboptimal rates can be
expected. Nevertheless, the fact that dense minimizers in [9] should achieve minimax
convergence rates in the inverse problem setup without the regularizing effect of δ-nets
discretization, and with only weak entropy restrictions, seems somewhat surprising.
Trying to fix the gap in the original proof, we had to impose a stronger condition
on the structure of the parameter set – in fact, a sort of local finite-dimensionality
condition.

Main theoretical results, i.e., the corrected versions of results from [8,9] are given in
Section 2, along with a detailed discussion of changes made to their original statements.
In Section 3, some examples of functional classes that fulfill the modified assumptions
are given and the relation between δ-net minimizers and dense minimizers is shortly
discussed.

2. RESULTS

In this section, we discuss the necessity of fixing some gaps in the proofs of Theorem 4
in [9] and of Lemma 5 in [8] and provide their corrected versions: Theorem 2.1 and
Lemma 2.2, respectively.

Let F ⊂ L2(Rd). For δ > 0, a set Fδ = {(gLj , gUj ) : j = 1, 2, . . . Nδ} of pairs of
L2-functions is called a δ-bracketing of F if:

1. ‖gUj − gLj ‖2 ≤ δ for j = 1, . . . , Nδ,
2. for any g ∈ F , there exists j = j(g) such that gLj ≤ g ≤ gUj .

We will assume that Nδ is finite for all δ > 0. Following [9], denote

FLδ = {gLj : j = 1, . . . , Nδ}, FUδ = {gUj : j = 1, . . . , Nδ}
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and, for Q = (A−1)∗, define

%
(
Q,FLδ ,FUδ

)
= max
gL∈FL

δ
,gU∈FU

δ

{
‖Q(gU − gL)‖2

‖gU − gL‖2

}
,

%
(
Q,FLδ ,FL2δ

)
= max
f∈FL

δ
,g∈FL2δ

{
‖Q(f − g)‖2

‖f − g‖2

}
,

and

%den (Q,Fδ) = max
{
%
(
Q,FLδ ,FUδ

)
, %
(
Q,FLδ ,FL2δ

)}
.

Let B2 = supf∈F ‖f‖2. For r ∈ (0, B2], define the entropy integral

G(r) =
r∫

0

ρden(Q,Fu)
√

log(#Fu)du,

where #Fu is the cardinality of Fu and log(#Fu) is called u-entropy with bracketing
of F .

Define the estimator f̂ as the minimizer of the empirical risk functional over F , up
to some precision εn, i.e.,

γn(f̂) ≤ inf
g∈F

γn(g) + εn

for some εn > 0. The following theorem is a corrected version of Theorem 4 in [9].
There is one important change with respect to the original version of the theorem:
the additional assumption 8. Some modifications will also be needed in the formulation
and in the proof of a main technical lemma used in the proof of the theorem.

Theorem 2.1. Assume that:

1. supf∈F ‖Af‖∞ ≤ B∞ for some constant B∞.
2. supg∈FL

δ
∪FU

δ
‖Qg‖∞ ≤ B∞ for some constant B∞.

3. The mapping δ → %den (Q,Fδ)
√

log (#Fδ) is decreasing on (0, B2].
4. G(B2) <∞.
5. %den (Q,Fδ) = cδ−a for some c > 0 and a ∈ [0, 1).
6. Q preserves positivity, i.e. g ≥ 0 implies that Qg ≥ 0.
7. G(δ)/δ2 is decreasing on (0, B2] and limδ→0+ G(δ)δa−1 =∞.
8. There exist constants D and r such that for each ball Kδ ⊂ L2(Rd) with radius
δ < r there exists a δ-bracketing (Kδ ∩ F)δ of Kδ ∩ F such that #(Kδ ∩ F)δ ≤ D.

If ψn is a sequence such that ψ2
n ≥ Cn−1/2G (ψn) and limn→∞ nψ

2(1+a)
n = ∞ for

some C > 0, then, for n large enough and some constant C ′ > 0,

sup
f∈F

E‖f̂ − f‖2
2 ≤ C ′

(
ψ2
n + εn

)
.
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Remarks on the proof of Theorem 2.1. Technically, the reason for imposing assump-
tion 8 is as follows. The proof of Theorem 4 in [9] goes along the same lines as the proof
of Theorem 3 in [9] up to step (79) in page 507. This means that the peeling device is
used to upper bound Psup, defined in formula (75), with the series given in (77). Then,
Lemma 4 is used for each term of the series, which eventually majorizes the series of
interest by a convergent geometrical series and, finally, by an exponential function that
is further integrated to produce a desired constant. Clearly, any application of Lemma 4
has to use the same radius R in both exponential terms and in the coefficient preceeding
the second term in the thesis of Lemma 4. In the proof of Theorem 4, however, the
authors substitute R =

√
bj (slightly more than the radius of the jth peeling layer) in

the exponential terms, but R = B2 in the coefficient. This may be correct for large j,
but for small j the coefficient should have the form 2 ·#{g ∈ F : ‖g− f‖2 ≤

√
bj}√bj ,

i.e., twice the cardinality of
√
bj-bracketing of the (subset of)

√
bj-ball. This quantity

has to be bounded by an absolute constant for the proof of Theorem 4, because, e.g.,
b0 converges to zero as n tends to infinity, which may potentially give exploding
number of

√
b0-brackets needed to cover {g ∈ F : ‖g − f‖2 ≤

√
b0}. Our additional

assumption 8 fixes that.

Some changes were also needed to fix a gap in the proof of Lemma 5 in [8]. In [9]
the same lemma has number 4 and it is a crucial tool in the proof of Theorem 4 (and of
our Theorem 2.1), providing exponential bounds for the tail probabilities of a centered
empirical process. For better readability, we recall (a slightly modified version of) the
lemma.

Let

νn(g) = n−1
n∑
i=1

g(Yi)−
∫
Y

g(y)(Af)(y)dµ(y)

be the centered empirical process.
Lemma 2.2. Let G ⊂ L2(Rd, λd) and R = supg∈G ‖g‖2. Assume that ‖Af‖∞ ≤ B∞
for the true function f and that conditions 2-6 of Theorem 2.1 hold true with F
replaced with G and B2 replaced with R. Then, for all ξ such that ξ ≥ n−1/2G̃(R),
where

G̃(R) = (1− 2a−1)−1
√
B∞ (92 + 96 · 2−2a)

×max
{

24
√

2G(R), 4
log 2

[
Ca + (1− a)−3/2Γ(3/2)

]
cR1−a

}
and Ca =

√
2
(
1− 2a−1)−1/2, one has

P
(

sup
g∈G

νn(Qg) ≥ ξ
)
≤ 4 exp

(
− nξ2C ′

B∞c2R2−2a

)
+ 2#GR exp

{
−n

2ξ2

72

(
B∞c

2R2−2a + 2
9ξB

′
∞

)−1
}
,

for some constant C ′ > 0.



On a dense minimizer of empirical risk in inverse problems 675

Remarks on the proof of Lemma 2.2. Notice that assumption 6 of positivity-preservation
property of Q appears in the original statement of Theorem 2.1 without being used
explicitly in its proof, but it is missing in the original formulation of Lemma 2.2,
although it is clearly exploited in the proof of the lemma (see (2.1) in the discussion
below).

Our version of the lemma also slightly differs from the original one in the form of
some constants. The constant Ca is missing in the original definition of G̃(R), and the
denominator in the exponent in the last term of the thesis equals 12 rather than 72. We
were only able to prove Lemma 2.2 in its current form. It should be stressed, however,
that the changes affect neither the application of the lemma, nor the conclusions of
the theorem.

We have also added the factor (1−2a−1)−1 in the definition of G̃(R), because of the
following reason. In the proof of the lemma, with R = supg∈G ‖g‖2 and Rk = 2−kR,
one considers δ-bracketings Gδ of a class G ⊂ L2(Rd) with δ = Rk. Let (hk,Lg , hk,Ug )
be a member of the bracketing net GRk such that hk,Lg ≤ g ≤ hk,Ug and define
∆k
g = hk,Ug − hk,Lg . For the displayed formula directly preceeding (128) in page 47

of [8] to hold true, one needs

∆k
g ≤ ∆k−1

g , (2.1)

as that implies Q∆k
g ≤ Q∆k−1

g . However, inequality (2.1) need not be true, unless
the Rk-bracketings are nested, which is not guaranteed, but may be enforced in
a more-or-less standard way at the price of increasing the number of brackets and
modifying some constants.

For the bracketing {(hk,Li , hk,Ui ) : i = 1, . . . , Nk} define disjoint classes

Gki =
{
g ∈ G : i = min{j : hk,Lj ≤ g ≤ hk,Uj }

}
and note that G =

⋃
i Gki . Assume that the bracketing is minimal so that all Gki are

nonempty. In general, {Gk+1
i : i = 1, . . . , Nk+1} does not have to be a subpartition

of the partition {Gki : i = 1, . . . , Nk}. However, the classes Gk+1
ij = Gki ∩ Gk+1

j with
i = 1, . . . , Nk and j = 1, . . . , Nk+1 define a partition of G into at most Nk · Nk+1
subsets (some may be empty) corresponding to the bracketing

{(
hk+1,L
j ∨ hk,Li , hk+1,U

j ∧ hk,Ui
)

: i = 1, . . . , Nk, j = 1, . . . , Nk+1

}
in which only those brackets are kept for which hk+1,L

j ∨ hk,Li ≤ hk+1,U
j ∧ hk,Ui . In

effect, any sequence of bracketings with cardinalities N1, N2, . . . can be transformed
into a nested sequence of bracketings such that the cardinality of the kth bracketing
does not exceed N1 · . . . · Nk and for the corresponding Rk-bracketing entropy one
obtains Hk = log(N1 · . . . ·Nk).
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The entropy integral is used in [8] in the proof of Lemma 5 only to obtain the last
displayed inequality in the proof in page 49. After transforming an arbitrary sequence
of bracketings to a nested one, one has, using ρden(Q,GRk) = cR−ak with a ∈ [0, 1),

∞∑
k=1

Rk ρden(Q,GRk)H1/2
k = c

∞∑
k=1

R1−a
k

( k∑
j=1

logNj
)1/2

≤ cR1−a
∞∑
k=1

2−k(1−a)
k∑
j=1

(logNj)1/2 = cR1−a
∞∑
j=1

(logNj)1/2
∞∑
k=j

(2a−1)k

= 2
1− 2a−1

∞∑
j=1

R

2j+1 ρden(Q,GRj )
√

log(#GRj ) ≤
2

1− 2a−1G(R),

which is sufficient for completion of the proof of the lemma only with our modified
definition of G̃(R).

3. FUNCTIONAL SPACES MEETING THE ASSUMPTIONS

The property postulated in assumption 8 in Theorem 2.1 is a bracketing analogue
of, so-called, finite doubling dimension, or finite Assouad dimension (cf., e.g., [6]
or [7, p. 81]). Although it is a restrictive assumption, we were not able to complete
the proof without imposing it.

To give an example of a class that satisfies assumption 8, let Bαp,q := Bαp,q(Lp[0, 1])
be the Besov space of functions on [0, 1], as defined, e.g., in [5, p. 54]. Notice that
Bαp,∞(Lp[0, 1]) ⊂ L2([0, 1]) for p ≥ 2.
Proposition 3.1. For d = 1, p ≥ 2 and α > 1/p, assumption 8 in Theorem 2.1 is
satisfied for any subset F of Bαp,∞ for which

M := sup
{
‖f − g‖Bαp,∞
‖f − g‖2

: f, g ∈ F , f 6= g

}
<∞. (3.1)

Proof. Given a function class F , let Hδ,∞(F) denote the log-cardinality of the minimal
δ-net with respect to the norm ‖ · ‖∞. For a Besov R-ball, defined as Kp,α,∞(0, R) ={
f ∈ Bαp,∞ : ‖f‖Bαp,∞ ≤ R

}
, we have the following: if α > 1/p, then for any δ > 0

Hδ,∞(Kp,α,∞(0, R)) ≤ C(1 + (R/δ)1/α), (3.2)

where C is a constant depending only on α and p. This follows as a special case of
Proposition 2 in [2], or Theorem 1.1 in [3]. For any δ > 0 and K(φ, δ) - a δ-ball
in L2(R) with centre φ, the set F ∩K(φ, δ) has L2-diameter bounded by 2δ, so there
exists φ0 ∈ F such that F ∩K(φ, δ) ⊂ F ∩K(φ0, 2δ). For every f ∈ F ∩K(φ0, 2δ),
we have ‖f − φ0‖Bαp,∞ ≤ 2Mδ, so f − φ0 ∈ Kp,α,∞(0, 2Mδ) and there exists a pair
(hL, hU ) from a δ-bracketing of Kp,α,∞(0, 2Mδ) such that hL + φ0 < f < hU + φ0.
Therefore,

log [# (F ∩K(φ, δ))δ] ≤ log
[
# (Kp,α,∞(0, 2Mδ))δ

]
.
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Because log(#Gδ) ≤ Hδ/2,∞(G) for any function class G and any norm dominated by
the sup-norm (see, e.g., Lemma 9.22 in [10]), one can use (3.2) to obtain

log [# (F ∩K(φ, δ))δ] ≤ C(1 + (4M)1/α),

so the class F satisfies assumption 8 in Theorem 2.1. Since entropy bounds analogous
to (3.2) hold for Besov spaces of funcions defined on domains other than [0, 1] (cf., [3]),
the presented reasoning can easily be generalized into multivariate setting.

As a more specific example, we give the following proposition.

Proposition 3.2. Set r = [α] + 1, where [α] stands for the integer part of α. In the
Sobolev space W r

2 ⊂ Bα2,∞ pick an L2-orthogonal system {φj} such that ‖φj‖2 ≤ 1
and ‖φ(r)

j ‖2 ≤ L, j = 1, 2, . . . for some constant L and define F (r)
L,N to be the set of

N -element linear combinations of functions from {φj}. Then F (r)
L,N satisfies condition

(3.1) with p = 2.

Proof. Recall that the Besov norm is defined as ‖f‖Bαp,∞ := ‖f‖p + |f |Bαp,q , with
the seminorm |f |Bαp,∞ = supt>0 t

−αωr(f, t) and the r-th modulus of smoothness
ωr(f, t), defined as in, e.g., [5]. For any f, g ∈ F (r)

L,N , the function f − g can be
expressed as

∑j2N
i=j1

βiφi for some j1, . . . , j2N . Without loss of generality assume ji = i
for i = 1, . . . , 2N . We have then:

|f − g|2Bα2,∞ ≤ ‖(f − g)(r)‖2
2 =

∥∥∥∥∥
2N∑
i=1

βiφ
(r)
i

∥∥∥∥∥
2

2

=
2N∑
i=1

β2
i

∥∥∥φ(r)
i

∥∥∥2

2
+
∑
i 6=j
〈βiφ(r)

i , βjφ
(r)
j 〉L2

≤
2N∑
i=1

β2
i

∥∥∥φ(r)
i

∥∥∥2

2
+
∑
i6=j

βiβj

∥∥∥φ(r)
i

∥∥∥
2

∥∥∥φ(r)
j

∥∥∥
2

≤
2N∑
i=1

β2
i

∥∥∥φ(r)
i

∥∥∥2

2
+ 1

2
∑
i 6=j

(
β2
i

∥∥∥φ(r)
i

∥∥∥2

2
+ β2

j

∥∥∥φ(r)
j

∥∥∥2

2

)

≤ (2N + 1)
2N∑
i=1

β2
i

∥∥∥φ(r)
i

∥∥∥2

2
≤ (2N + 1)L

2N∑
i=1

β2
i

≤ (2N + 1)L‖f − g‖2
2.

The reasoning above first used the fact that the Besov seminorm | · |Bα2,∞ is bounded
above by the Sobolev seminorm (because ωr(f, t) ≤ tr‖f (r)‖2, see inequality (7.12)
in [5], and r > α), followed by an application of the Cauchy-Schwarz inequality and the
orthogonality of {φi}. Hence, ‖f − g‖Bα2,∞ ≤ (1 +

√
(2N + 1)L)‖f − g‖, and condition

(3.1) holds for F (r)
L,N , with some M ≤ 1 +

√
(2N + 1)L.
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It should be stressed that the necessity of imposing the additional restrictive
assumption 8 to cure the problems with the dense minimizer of empirical risk does
not limit the practical applicability of the main part of the Klemelä-Mammen theory,
which is build for δ-net minimizers. The latter not only applies to several typical
function classes, as discussed in Section 5 in [9], but also has the additional appeal of
being easier to implement. The results on dense minimization of empirical risk, both
ours and those in [9], are thus mainly of theoretical interest.
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