PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristic of ion-acoustic waves described in the solutions of the (3+1)-dimensional generalized Korteweg-de Vries-Zakharov-Kuznetsov equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The generalized Korteweg-de Varies-Zakharov-Kuznetsov equation (gKdV-ZK) in (3+1)-dimension has been investigated in this research. This model is used to elucidate how a magnetic field affects the weak ion-acoustic wave in the field of plasma physics. To deftly analyze the wide range of wave structures, we utilized the modified extended tanh and the extended rational sinh-cosh methods. Hyperbolic, periodic, and travelling wave solutions are presented as the results. Consequently, solitary wave solutions are also attained. This study shows that the solutions reported here are distinctive when our findings are contrasted against well-known outcomes. Moreover, realized findings are figured out in 3-dimensional, 2-dimensional, and contour profile graphs for the reader to comprehend their dynamics due to parameter selection. According to the findings, we can conclude that the suggested computational techniques are simple, dynamic, and well-organized. These methods are very functional for numerical calculations of complex nonlinear problems. Our results include a fundamental starting point in understanding physical behavior and the structure of the studied systems.
Rocznik
Strony
36--48
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Harran University, Faculty of Arts and Sciences, Department of Mathematics, 63290 Şanliurfa, Turkey
  • Harran University, Faculty of Arts and Sciences, Department of Mathematics, 63290 Şanliurfa, Turkey
  • Harran University, Faculty of Arts and Sciences, Department of Mathematics, 63290 Şanliurfa, Turkey
  • Harran University, Faculty of Education, Department of Mathematics and Science Education, 63190 Şanliurfa, Turkey
Bibliografia
  • [1] Shen, Y., & Tian, B. (2021). Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Applied Mathematics Letters, 122, 107301.
  • [2] Wang, M., Tian, B., Hu, C.C., & Liu, S.H. (2021). Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber. Applied Mathematics Letters, 119, 106936.
  • [3] Gao, X.T., Tian, B., Shen, Y., & Feng, C.H. (2021). Comment on “Shallow water in an open sea or a wide channel: Auto-and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system”. Chaos, Solitons & Fractals, 151, 111222.
  • [4] Gao, X.Y., Guo, Y.J., & Shan, W.R. (2021). Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Applied Mathematics Letters, 120, 107161.
  • [5] Aksoy, E., Bekir, A., & Çevikel, A.C. (2019). Study on fractional differential equations with modified Riemann–Liouville derivative via Kudryashov method. International Journal of Nonlinear Sciences and Numerical Simulation, 20(5), 511-516.
  • [6] Ablowitz, M.J., Ablowitz, M.A., Clarkson, P.A., & Clarkson, P.A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering (Vol. 149). Cambridge University Press.
  • [7] Baskonus, H.M., Mahmud, A.A., Muhamad, K.A., & Tanriverdi, T. (2022). A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial differential equation. Mathematical Methods in the Applied Sciences, 45(14), 8737-8753.
  • [8] Baskonus, H.M., Mahmud, A.A., Muhamad, K.A., Tanriverdi, T., & Gao, W. (2022). Studying on Kudryashov-Sinelshchikov dynamical equation arising in mixtures liquid and gas bubbles. hermal Science, 26(2 Part B), 1229-1244.
  • [9] Tanriverdi, T., Baskonus, H.M., Mahmud, A.A., & Muhamad, K.A. (2021). Explicit solution of fractional order atmosphere-soil-land plant carbon cycle system. Ecological Complexity, 48, 100966.
  • [10] Verheest, F., Mace, R.L., Pillay, S.R., & Hellberg, M.A. (2002). Unified derivation of Korteweg-de Vries-Zakharov-Kuznetsov equations in multispecies plasmas. Journal of Physics A: Mathematical and General, 35(3), 795.
  • [11] Devanandhan, S., Singh, S.V., Lakhina, G.S., & Bharuthram, R. (2015). Small amplitude electron acoustic solitary waves in a magnetized superthermal plasma. Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 1322-1330.
  • [12] Khalique, C.M., & Adeyemo, O.D. (2020). A study of (3+1)-dimensional generalized Korteweg-de Vries-Zakharov-Kuznetsov equation via Lie symmetry approach. Results in Physics, 18, 103197.
  • [13] Younas, U., Ren, J., Baber, M.Z., Yasin, M.W., & Shahzad, T. (2022). Ion-acoustic wave structures in the fluid ions modeled by higher dimensional generalized Korteweg-de Vries-Zakharov-Kuznetsov equation. Journal of Ocean Engineering and Science.
  • [14] Rehman, H.U., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Anwar, I., Baber, M.Z., & Althobaiti, A. (2022). Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg-de Vries-Zakharov-Kuznetsov equation in plasma physics. Results in Physics, 33, 105069.
  • [15] Seadawy, A.R. (2016). Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma. Physica A: Statistical Mechanics and its Applications, 455, 44-51.
  • [16] Tariq, K.U., & Javed, R. (2022). Some traveling wave solutions to the generalized (3+1)-dimensional Korteweg-de Vries-Zakharov-Kuznetsov equation in plasma physics. Mathematical Methods in the Applied Sciences.
  • [17] Baleanu, D., Kılıc¸, B., Uǧurlu, Y., & İnҫ, M. (2015). The first integral method for the (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov and Hirota equations. Romanian Journal of Physics, 60(1-2), 111-125.
  • [18] Zhou, T.Y., Tian, B., Zhang, C.R., & Liu, S.H. (2022). Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma. The European Physical Journal Plus, 137(8), 1-17.
  • [19] Khan, K., & Akbar, M. A. (2023). Study of explicit travelling wave solutions of nonlinear evolution equations. Partial Differential Equations in Applied Mathematics, 7, 100475. DOI: 10.1016/j.padiff.2022.100475.
  • [20] Shakeel, M., Bibi, A., Zafar, A., & Nisar, K.S. Analytical Study of the Fractional (3+1)-Dimensional Gkdv-Zk Equation. Available at SSRN 4120281.
  • [21] Nonlaopon, K., Mann, N., Kumar, S., Rezaei, S., & Abdou, M.A. (2022). A variety of closed-form solutions, Painlevé analysis, and solitary wave profiles for modified KdV-Zakharov-Kuznetsov equation in (3+1)-dimensions. Results in Physics, 36, 105394.
  • [22] Fatema, K., Islam, M.E., Yiasir Arafat, S., & Ali Akbar, M. (2022). Solitons’ behavior of waves by the effect of linearity and velocity of the results of a model in magnetized plasma field. Journal of Ocean Engineering and Science. DOI: 10.1016/j.joes.2022.07.003.
  • [23] Seadawy, A.R., & Iqbal, M. (2021). Propagation of the nonlinear damped Korteweg-de Vries equation in an unmagnetized collisional dusty plasma via analytical mathematical methods. Mathematical Methods in the Applied Sciences, 44(1), 737-748.
  • [24] Seadawy, A.R., Iqbal, M., & Lu, D. (2020). Construction of soliton solutions of the modify unstable nonlinear Schrödinger dynamical equation in fiber optics. Indian Journal of Physics, 94, 823-832.
  • [25] Iqbal, M., Seadawy, A.R., & Lu, D. (2018). Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods. Modern Physics Letters A, 33(32), 1850183.
  • [26] Seadawy, A.R., & Cheemaa, N. (2019). Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrödinger equation in nonlinear optics. Modern Physics Letters B, 33(18), 1950203.
  • [27] Seadawy, A.R., Iqbal, M., & Lu, D. (2019). Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation. Computers & Mathematics with Applications, 78(11), 3620-3632.
  • [28] Seadawy, A.R., Iqbal, M., & Lu, D. (2020). Propagation of long-wave with dissipation and dispersion in nonlinear media via generalized Kadomtsive-Petviashvili modified equal width-Burgers equation. Indian Journal of Physics, 94, 675-687.
  • [29] Iqbal, M., Seadawy, A.R., Lu, D., & Xia, X. (2019). Construction of bright-dark solitons and ion-acoustic solitary wave solutions of dynamical system of nonlinear wave propagation. Modern Physics Letters A, 34(37), 1950309.
  • [30] Iqbal, M., Seadawy, A.R., Khalil, O.H., & Lu, D. (2020). Propagation of long internal waves in density stratified ocean for the (2+1)-dimensional nonlinear Nizhnik-Novikov-Vesselov dynamical equation. Results in Physics, 16, 102838.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20698f80-cec5-4a4f-b446-8e4446ac2336
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.