PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biopolymers based paper coating with promoted grease resistivity, bio-degradable and mechanical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dominance of plastics in the packaging market is due to their low weight and thickness, which save transportation costs. However, their non-biodegradability poses a significant threat to the environment. Paper, on the other hand, is considered as a safer alternative due to its natural composition and biodegradability. The porous structure of paper limits its application in packaging, and its poor water resistance further restricts its use in humid environments. Therefore, lamination is a method useful tool to improve the barrier properties of paper. Additionally, the researchers are focusing on developing biodegradable and water-based coatings with anti-fat properties as a green alternative to plastic packaging. The impact of a new grease-resistant coating composed of starch, gelatin and sodium alginate on the mechanical properties of paper was investigated through tensile, tearing, and bursting strength tests. The results showed significant improvements in the mechanical properties of the coated paper sheets. Furthermore, the biodegradability test indicated that the paper samples coated with the new composition showed a 50% weight loss after one week of incubation in the soil, and after three weeks, they exhibited 100% weightloss, demonstrating their outstanding biodegradability.
Słowa kluczowe
Rocznik
Strony
66--71
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering,Department of Nanomaterials Physiochemistry, Piastow Ave. 45, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering,Department of Nanomaterials Physiochemistry, Piastow Ave. 45, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering,Department of Nanomaterials Physiochemistry, Piastow Ave. 45, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering,Department of Nanomaterials Physiochemistry, Piastow Ave. 45, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering,Department of Nanomaterials Physiochemistry, Piastow Ave. 45, 70-310 Szczecin, Poland
  • Arctic Paper Kostrzyn SA, ul. Fabryczna 1, 66-470, Kostrzyn nad Odra, Poland
  • Arctic Paper Kostrzyn SA, ul. Fabryczna 1, 66-470, Kostrzyn nad Odra, Poland
  • Arctic Paper Kostrzyn SA, ul. Fabryczna 1, 66-470, Kostrzyn nad Odra, Poland
  • Arctic Paper Kostrzyn SA, ul. Fabryczna 1, 66-470, Kostrzyn nad Odra, Poland
autor
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering,Department of Nanomaterials Physiochemistry, Piastow Ave. 45, 70-310 Szczecin, Poland
Bibliografia
  • 1. Selke, S.E.M., & Culter, J.D. (2016). Introduction. In Plastics Packaging. Carl Hanser Verlag GmbH & Co. KG. 1–7. DOI: 10.3139/9783446437197.001.
  • 2. Zaidi, S., Vats, M., Kumar, N., Janbade, A., & Gupta, M.K. (2022). Evaluation of food packaging paper for microbial load and storage effect on the microbial activity of paper. Packaging Technol. Sci., 35(7), 569–577. DOI: 10.1002/pts.2652.
  • 3. Välsänen, O.M., Mentu, J., & Salkinoja-Salonen, M.S. (1991). Bacteria in food packaging paper and board. J. Appl. Bacteriol., 71(2), 130–133. DOI: 10.1111/j.1365-2672.1991.tb02967.x.
  • 4. Nemli, G., & Çolakoglu, G. (2005). The influence of lamination technique on the properties of particleboard. Buil. Environ., 40(1), 83–87. DOI: 10.1016/j.buildenv.2004.05.007.
  • 5. Ali, R.R., Rahman, W.A., Ibrahim, N.B., & Kasmani, R.M. (2013). Starch-Based Biofilms for Green Packaging. In Developments in Sustainable Chem. Bioproc. Technol. Springer US. 347–354. DOI: 10.1007/978-1-4614-6208-8_41.
  • 6. Nabels-Sneiders, M., Platnieks, O., Grase, L., & Gaidukovs, S. (2022). Lamination of Cast Hemp Paper with Bio-Based Plastics for Sustainable Packaging: Structure-Thermomechanical Properties Relationship and Biodegradation Studies. J. Compos. Sci., 6(9), 246. DOI: 10.3390/jcs6090246.
  • 7. Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Pol., 146, 36–45. DOI: 10.1016/j.carbpol.2016.03.051.
  • 8. Martin, O., Schwach, E., Averous, L., & Couturier, Y. (2001). Properties of Biodegradable Multilayer Films Based on Plasticized Wheat Starch. Starch - Stärke, 53(8), 372. DOI: 10.1002/1521-379X(200108)53:8<372::AID-STAR372>3.0.CO;2-F
  • 9. Hervy, M., Bock, F., & Lee, K.-Y. (2018). Thinner and better: (Ultra-)low grammage bacterial cellulose nanopaper-reinforced polylactide composite laminates. Compos. Sci. Technol., 167, 126–133. DOI: 10.1016/j.compscitech.2018.07.027.
  • 10. Puekpoonpoal, N., Phattarateera, S., Kerddonfag, N., & Aht-Ong, D. (2021). Morphology development of PLAs with different stereo-regularities in ternary blend PBSA/PBS/PLA films. Pol-Plasti. Technol. Mater., 1–14. DOI: 10.1080/25740881.2021.1930043.
  • 11. Hervy, M., Blaker, J.J., Braz, A.L., & Lee, K.-Y. (2018). Mechanical response of multi-layer bacterial cellulose nanopaper reinforced polylactide laminated composites. Composites Part A: Appl. Sci. Manuf., 107, 155–163. DOI:10.1016/j.compositesa.2017.12.025.
  • 12. Sundar, N., Kumar, A.S., Pavithra, A. & Ghosh, S. (2020). Studies on Semi-crystalline Poly Lactic Acid (PLA) as a Hydrophobic Coating Material on Kraft Paper for Imparting Barrier Properties in Coated Abrasive Applications. Progress in Organic Coatings, 145, 105682. DOI: 10.1016/j.porgcoat.2020.105682.
  • 13. Amini, E., Azadfallah, M., Layeghi, M., & Talaei-Hassanloui, R. (2016). Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose, 23(1), 557–570. DOI: 10.1007/s10570-015-0846-1.
  • 14. Dutta, J., Tripathi, S., & Dutta, P.K. (2012). Progress in antimicrobial activities of chitin, chitosan and its oligosaccha-rides: a systematic study needs for food applications. Food Sci. Technol. Internat., 18(1), 3–34. DOI: 10.1177/1082013211399195.
  • 15. Kumar, R., Ghoshal, G., & Goyal, M. (2019). Synthesis and functional properties of gelatin/CA–starch composite film: excellent food packaging material. J. Food Sci. Technol., 56(4), 1954–1965. DOI: 10.1007/s13197-019-03662-4.
  • 16. Rastogi, V., & Samyn, P. (2015). Bio-Based Coatings for Paper Applications. Coatings, 5(4), 887–930. DOI: 10.3390/coatings5040887.
  • 17. Martin, O., Schwach, E., Averous, L., & Couturier, Y. (2001). Properties of Biodegradable Multilayer Films Based on Plasticized Wheat Starch. Starch - Stärke, 53(8), 372. DOI: 10.1002/1521-379X(200108)53:8<372::AID-STAR372>3.0.CO;2-F.
  • 18. Nechita, P., & Roman (Iana-Roman), M. (2020). Review on Polysaccharides Used in Coatings for Food Packaging Papers. Coatings, 10(6), 566. DOI: 10.3390/coatings10060566
  • 19. Yook, S., Park, H., Park, H., Lee, S.-Y., Kwon, J., & Youn, H. J. (2020). Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose, 27(8), 4509–4523. DOI: 10.1007/s10570-020-03061-5
  • 20. Zhao, H., Kwak, J., Conradzhang, Z., Brown, H., Arey, B., & Holladay, J. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polym., 68(2), 235–241. DOI: 10.1016/j.carbpol.2006.12.013.
  • 21. Buléon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. Internat. J. Biol. Macromol., 23(2), 85–112. DOI: 10.1016/S0141-8130(98)00040-3.
  • 22. Srichuwong, S., Isono, N., Mishima, T., & Hisamatsu, M. (2005). Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. Internat. J. Biol. Macromol.., 37(3), 115–121. DOI: 10.1016/j.ijbiomac.2005.09.006.
  • 23. Dassanayake, R.S., Dissanayake, N., Fierro, J.S., Abidi, N., Quitevis, E.L., Boggavarappu, K., & Thalangamaarachchige, V.D. (2023). Characterization of cellulose nanocrystals by current spectroscopic techniques. Appl. Spectrosc. Rev., 58(3), 180–205. DOI: 10.1080/05704928.2021.1951283.
  • 24. Silva, K.C.G., Bourbon, A.I., Pastrana, L., & Sato, A.C K. (2021). Biopolymer interactions on emulsion-filled hydro-gels: chemical, mechanical properties and microstructure. Food Res. Internat.141, 110059. DOI: 10.1016/j.foodres.2020.110059.
  • 25. Bertoft, E. (2017). Understanding Starch Structure: Recent Progress. Agronomy, 7(3), 56. DOI: 10.3390/agronomy7030056.
  • 26. Dille, M.J., Haug, I.J., & Draget, K.I. (2021). Gelatin and collagen. In Handbook of Hydrocolloids. Elsevier. 1073–1097. DOI: 10.1016/B978-0-12-820104-6.00028-0.
  • 27. Kaczmarek, B., Nadolna, K., & Owczarek, A. (2020). The physical and chemical properties of hydrogels based on natural polymers. In Hydrogels Based on Natural Polym. Elsevier. 151–172. DOI: 10.1016/B978-0-12-816421-1.00006-9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2068750a-96ac-48a7-bc2d-3c8b5fabce6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.