PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Construction and pre-evaluation of an in-house cylindrical ionization chamber fabricated from locally available materials

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The objectives of this study were to construct a very robust in-house cylindrical ionization chamber from locally available materials to minimize cost, and to assess its suitability for use in a clinical setting. Materials and Methods: The entire body of the constructed IC was composed of Perspex (PMMA). Other components of the IC were made from locally available materials, such as paper and discarded items. The in-house IC was made waterproof by passing the triaxial cable connecting its various electrodes through a plastic tube which once served as a drainage tube of a urine bag. This connection was made such that the chamber was vented to the environment. The completed in-house IC was evaluated for: polarity effect, ion recombination, ion collection efficiency, stability, dose linearity, stem effect, leakage current, angular, dose rate and energy dependences. Results: Although the pre-evaluation results confirmed that the in-house IC satisfied the stipulated international standards for ICs, there was a need to enhance the stem effect and leakage current characteristics of the IC. The in-house IC was found to have an absorbed dose to water calibration coefficient of 4.475 x 107 Gy/C (uncertainty of 1.6%) for cobalt 60 through a cross-calibration with a commercial 0.6 cc cylindrical IC with traceability to the Germany National Dosimetry Laboratory. Using a Jaffé diagram, the in-house IC was also found to have a recombination correction factor of 1.0078 when operated at the calibration voltage of + 400 V. In terms of beam quality correction factors for megavoltage beams, the in-house IC was found to exhibit characteristics similar to those of Scanditronix-Wellhofer IC 70 Farmer type IC. Conclusion: The constructed in-house Farmer-type IC was able to meet all the recommended characteristics for an IC, and therefore, the in-house IC is suitable for beam output calibration in external beam radiotherapy.
Rocznik
Strony
188--199
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Department of Radiography, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Ghana
  • Department of Radiation Oncology, National Centre for Radiotherapy and Nuclear Medicine, Korle-Bu Teaching Hospital, Ghana
  • Department of Health and Technology Support Service- Division of Physical Asset Management, Ministry of Health and Population, Malawi
  • Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Ghana
Bibliografia
  • 1. International Commission on Radiation Units and Measurements (ICRU). ICRU Report 24. Determination of absorbed dose in a patient irradiated by beams of x or gamma rays in radiotherapy procedures. International Commission on Radiation Units and Measurements. Bethesda, Maryland. 1976
  • 2. van der Merwe D, Van Dyk, J, Brendan H, et al. Accuracy requirements and uncertainties in radiotherapy: a report of the International Atomic Energy Agency. Acta Oncologica. 2017;56(1):1-6. 10.1080/0284186X.2016.1246801
  • 3. Podgorsak EB. Radiation Oncology Physics: A handbook for teachers and students. International Atomic Energy Agency (IAEA), Vienna. 2005
  • 4. Almond PR, Biggs PJ, Coursey BM, et al. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847-1870. https://doi.org/10.1118/1.598691
  • 5. International Atomic Energy Agency (IAEA).Technical report series 398. Absorbed dose determination in external beam radiotherapy. IAEA, Vienna. 2000
  • 6. International Atomic Energy Agency (IAEA). Technical report series 374. Calibration of Dosimeters Used in Radiotherapy. IAEA, Vienna. 1994
  • 7. Gibbons JP, Antolak JA, Followill DS, et al. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71. Med Phys. 2014;41(3):031501. https://doi.org/10.1118/1.4864244
  • 8. International Electrotechnical Commission. Medical Electrical Equipment- Dosimeters with Ionization Chambers as Used in Radiotherapy, IEC 60731, IEC, Geneva. 2011
  • 9. Khan FM. The Physics of Radiation Therapy (4th ed.). Lippincott Williams and Wilkins. 2010
  • 10. Besheli MG, Simiantonakis I, Zink K, Budach W. Determination of the ion recombination correction factor for intraoperative electron beams. Zeitschrift für Medizinische Physik. 2015;26(1): 35-44. https://doi.org/10.1016/j.zemedi.2015.06.011
  • 11. Physikalisch-Technische Werkstätten (PTW). Ionization radiation detectors: Including codes of practice. PTW-Freiburg, Germany. 2009
  • 12. Kweon DC, Lee JS, Goo EH, et al. An Overall Stem Effect, including Stem Leakage and Stem Scatter, for a TM30013 Farmer-type Chamber. Journal of the Korean Physical Society. 2011;58(6):1688-1696. https://doi.org/10.3938/jkps.58.1688
  • 13. Low DA, Parikh P, Dempsey JF, Wahab S, Huq S. Ionization chamber volume averaging effects in dynamic intensity modulated radiation therapy beams. Med Phys. 2003;30(7):1706-1711. https://doi.org/10.1118/1.1582558
  • 14. McEwen MR, DeWerd L, Ibbott G, et al. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams. Med Phys. 2014;41(4):041501. https://doi.org/10.1118/1.4866223
  • 15. Wang Y, Easterling SB, Ting JY. Ion recombination corrections of ionization chambers in flattening filter-free photon radiation. J Appl Clin Med Phys. 2012;13(5):262-268. https://doi.org/10.1120/jacmp.v13i5.3758
  • 16. Hyun MA, Miller JR, Micka JA, DeWerd LA. Ion recombination and polarity corrections for small-volume ionization chambers in high-dose-rate, flattening-filter-free pulsed photon beams. Medical Physics. 2017;44(2):618-627. https://doi.org/10.1002/mp.12053
  • 17. Kry SF, Popple R, Molineu A, Followill DS. Ion recombination correction factors (P(ion)) for Varian TrueBeam high-dose-rate therapy beams. J Appl Clin Med Phys. 2012;13(6):318-325. https://doi.org/10.1120/jacmp.v13i6.3803
  • 18. El-Moataz AB, Abouelenein HS, Ammar H, Khalil MM, El-Nagdy MS. Evaluation of the Characteristics of Ionization Chambers Used for Commissioning in High Dose Rate Linacs. Insights Med Phys. 2019;4(1):1
  • 19. Walter AE, Hansen JB, DeWerd LA. Evaluation of ionization chamber stability checks using various sources. Phys Med. 2020;80:327-334. https://doi.org/10.1016/j.ejmp.2020.11.010
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2062d442-91a2-45e5-877d-c710b0f4b8ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.