PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An early warning method for a slope based on the increment ratio of anchor cable internal force

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Prestressed anchor cables are active reinforcement to improve slope stability. However, the anchoring is not a permanent guarantee of stability, and the slope retains a potential risk of instability. From the perspective of the internal force of anchor cables, a new early warning method for the safety of the slope is provided, and a slope analysis model is established. With the increase in the strength reduction factor, the internal force increment curves of anchor cables under different prestresses are obtained. The point corresponding to strength reduction factors λ1 and λ2 represents a warning point. Key conclusions are drawn as follows: (1) The internal force of an anchor cable can be used to judge the stability of the slope strengthened by a prestressed anchor cable. (2) A warning index based on the internal force increment ratio of anchor cables is established. (3) The internal force increment ratio of anchor cables eliminates the influence of the initial prestress and is convenient for engineering applications.
Rocznik
Strony
553--569
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
autor
  • School of Environmental Science and Engineering, Changzhou University, Changzhou, China
autor
  • School of Environmental Science and Engineering, Changzhou University, Changzhou, China
autor
  • School of Civil Engineering, State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China
autor
  • Water Development Group, Sichuan Water Development Group CO., LTD., Chengdu, China
autor
  • School of Civil Engineering, State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China
autor
  • School of Civil Engineering, Changzhou University, Changzhou, China
Bibliografia
  • [1] J. Li, S.X. Chen, and F. Yu, “Discussion on reinforcing high and steep slope mechanism with prestressed anchor cable”, Rock and Soil Mechanics, vol. 41, no. 2, pp. 707-713, 2020, DOI: 10.16285/j.rsm.2019.0034.
  • [2] D.F. Li, Y.L. Zhang, and C.X. Chen, “Design of prestressed-cable sommer for slope-reinforcing engineering”, Rock and Soil Mechanics, vol. 21, no. 2, pp. 170-172, 2000, DOI: 10.16285/j.rsm.2000.02.019.
  • [3] S.G. Du, “Method of equal accuracy assessment for the stability analysis of large open-pit mine slopes”, Chinese Journal of Rock Mechanics and Engineering, vol. 37, no. 6, pp. 1301-1331, 2018, DOI: 10.13722/j.cnki.jrme.2018.0158.
  • [4] V. Kamchoom and A.K. Leung, “Hydro-mechanical reinforcements of live poles to slope stability”, Soils and Foundations, vol. 58, no. 6, pp. 1423-1434, 2018, DOI: 10.1016/j.sandf.2018.08.003.
  • [5] Y.A. Kim, H.I. Lee, K. wan Ko, and T.H. Kwon, “Centrifuge modeling and analytical validation of seismic amplification in a slope during earthquakes - Implications to seismic slope stability analysis”, Soil Dynamics and Earthquake Engineering, vol. 163, art. no.107502, 2022, DOI: 10.1016/j.soildyn.2022.107502.
  • [6] B. Li, “Study on Safety Evaluation Index of Slope Prestressed Anchor Cable”. [Online]. Available: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD{&}dbname=CMFD201301{&}filename=1012048737.nh{&}uniplatform=NZKPT{&}v=gMBXNtI3p1osOk2JFD7ozGcRDT7v_lNBgWPuY9Gp_NO9_FAxE8MjcxgYFKC3fRn.
  • [7] C. Millot, C. Quantin-Nataf, C. Leyrat, V. Lherm, and M. Volat, “Assessing slope uncertainties of martian Digital Elevation Models from numerical propagation of errors on synthetic geological surfaces”, Icarus, vol. 391, art. no. 115341, 2022, DOI: 10.1016/j.icarus.2022.115341.
  • [8] J. Zaczek-Peplinska and M. Kowalska, “Application of non-contact geodetic measurement techniques in dam monitoring”, Archives of Civil Engineering, vol. 66, no. 3, pp. 49-70, 2022, DOI: 10.24425/ace.2022.141873.
  • [9] S.Y. Zhao, Y.R. Zheng, and Y.F. Zhang, “Study on slope failure criterion in strength reduction finite element method”, Rock and Soil Mechanics, vol. 26, no. 2, pp. 332-336, 2005, DOI: 10.16285/j.rsm.2005.02.035.
  • [10] D.D. Env, Eurocode 7: Geotechnical design. UK, 1997.
  • [11] J.C. Gu, J. Shen, A.M. Chen, and Z.Q. Ming, “Model Testing Study of Strain Distribution Regular in Rock Mass Caused by Prestressed Anchorage Cable”, Chinese Journal of Rock Mechanics and Engineering, no. S1, pp. 917-921, 2000. [Online]. Available: https://kns.cnki.net/kcms/detail/detail.aspx.
  • [12] D.V. Griffiths and R.M. Marquez, “Three-dimensional slope stability analysis by elasto-plastic finite elements”, Geotechnique, vol. 57, no. 6, pp. 537-546, 2007, DOI: 10.1680/geot.2007.57.6.537.
  • [13] Z.Q. Liu, C.Y. Zhou, L.G. Dong, X.R. Tan, and Y.M. Deng, “Slope stability and strengthening analysis by strength reduction FEM”, Rock and Soil Mechanics, vol. 26, no. 4, pp. 558-561, 2005, DOI: 10.16285/j.rsm.2005.04.010.
  • [14] F.M. Zhang, W.B. Zhao, N. Liu, and Z.Y. Chen, “Long-Term Performance and Load Predtion Model Of Prestressed Cables”, Chinese Journal of Rock Mechanics and Engineering, vol. 23, no. 1, pp. 39-43, 2004, DOI: 10.3321/j.issn:1000-6915.2004.01.008.
  • [15] X.L. Ding, Q. Sheng, J. Han, L.K. Cheng, and S.W. Bai, “Nerical Simulation Testing Study on Reinforcement Mechanism of Prestressed Anchorage Cable”, Chinese Journal of Rock Mechanics and Engineering, vol. 21, no. 7, pp. 980-988, 2002, DOI: 10.3321/j.issn:1000-6915.2002.07.009.
  • [16] Y. Zhu, T. Ishikawa, S.S. Subramanian, and B. Luo, “Early warning system for rainfall- and snowmelt-induced slope failure in seasonally cold regions”, Soils and Foundations, vol. 61, no. 1, pp. 198-217, 2020, DOI: 10.1016/j.sandf.2020.11.009.
  • [17] J. Eichenberger, A. Ferrari, and L. Laloui, “Early warning thresholds for partially saturated slopes in volcanic ashes”, Computers and Geotechnics, vol. 49, no. 1, pp. 79-89, 2013, DOI: 10.1016/j.compgeo.2012.11.002.
  • [18] S.S. Subramanian, T. Ishikawa, and T. Tokoro, “An early warning criterion for the prediction of snowmelt-induced soil slope failures in seasonally cold regions”, Soils and Foundations, vol. 58, no. 3, pp. 582-601, 2018, DOI: 10.1016/j.sandf.2018.02.021.
  • [19] M. Chen and Q. Jiang, “An early warning system integrating time-of-failure analysis and alert procedure for slope failures”, Soils and Foundations, vol. 272, art. no. 105629, 2020, DOI: 10.1016/j.enggeo.2020.105629.
  • [20] H. Zhu, Q. Xiang, B. Luo, Y. Du, and M. Li, “Evaluation of failure risk for prestressed anchor cables based on the AHP-ideal point method: An engineering application”, Engineering Failure Analysis, vol. 138, art. no. 106293, 2022, DOI: 10.1016/j.engfailanal.2022.106293.
  • [21] A.P. Dyson and A. Tolooiyan, “Comparative Approaches to Probabilistic Finite Element Methods for Slope Stability Analysis”, Simulation Modelling Practice and Theory, vol. 100, art. no. 102061, 2020, DOI: 10.1016/j.simpat.2019.102061.
  • [22] S. Alemdag, A. Kaya, M. Karadag, et al., “Utilization of the limit equilibrium and finite element methods for the stability analysis of the slope debris: An example of the Kalebasi District (NE Turkey)”, Journal of African Earth Sciences, vol. 106, pp. 134-146, 2015, DOI: 10.1016/j.jafrearsci.2015.03.010.
  • [23] H. Michalak and P. Przybysz, “Subsoil movements forecasting using 3D numerical modeling”, Archives of Civil Engineering, vol. 67, no. 1, pp. 367-385, 2021, DOI: 10.24425/ace.2021.136478.
  • [24] X. Zhang, S.W. Zhou, Y.S. Li, J.H. Pan, and S. Jiang, “Early Warning Criterion and Parameter Sensitivity Analysis of Argillaceous Sandstone Slope”, Journal of Yangtze River Scientific Research Institute, vol. 36, no. 3, pp. 90-97, 2019, DOI: 10.11988/ckyyb.20170963.
  • [25] C. Li, J.B. Zhu, B. Wang, Y.Z. Jiang, X.H. Liu, and P. Zheng, “Critical deformation velocity of landslides in different deformation phases”, Chinese Journal of Rock Mechanics and Engineering, vol. 35, no. 7, pp. 1407-1414, 2016, DOI: 10.13722/j.cnki.jrme.2015.1548.
  • [26] S.R. Wu, Y.M. Jin, J.S. Shi, Y.S. Zhang, J.L. Han, H. Feng, and D. Chen, “A primary study on landslide warning criterion - An example from the reservoir region of the Three Gorges”, Journal of Jilin University, vol. 34, no. 4, pp. 596-600, 2004, DOI: 10.13278/j.cnki.jjuese.2004.04.020.
  • [27] C. Wang, S.R. Zhang, F.H. Zhang, and C.B. Du, “A dynamic simulation analysis method of high-steep slopes based on real-time numerical model and its applications”, Rock and Soil Mechanics, vol. 37, no. 8, pp. 2383-2390, 2016, DOI: 10.16285/j.rsm.2016.08.034.
  • [28] Y.P. Wang, Q. Xu, G. Zheng, and H. J, Zheng, “Arheology experimental investigation on early warning model for landslide based on inverse-velocity method”, Rock and Soil Mechanics, vol. 36, no. 6, pp. 1606-1614, 2015, DOI: 10.16285/j.rsm.2015.06.011.
  • [29] M. Yang, N. Li, H.R. Li, and G.F. Li, “Evaluation of stability of toppling slope by increment method of anchoring cable stress”, Hydro-Science and Engineering, vol. 2, no. 2, pp. 8-15, 2019, DOI: 10.16198/j.cnki.1009-640x.2019.02.002.
  • [30] Y.F. Wang, Y.H. Wang, and H.Y. X, “Computing of the Anchor by the Method of Three-Dimension Point-Radiate Infinite Elements”, Journal of China University of Geosciences, vol. 18, no. 2, pp. 185-190, 2007, DOI: 10.1016/S1002-0705(07)60036-3.
  • [31] Q. Xu, et al., “Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai terrace, China”, Engineering Geology, vol. 278, art. no. 105817, 2020, DOI: 10.1016/j.enggeo.2020.105817.
  • [32] F.A.B. Danziger, B.R. Danziger, and M.P. Pacheco, “The simultaneous use of piles and prestressed anchors in foundation design”, Engineering Geology, vol. 87, no. 3-4, pp. 163-177, 2006, DOI: 10.1016/j.enggeo.2006.06.003.
  • [33] M.A. Wadee, N. Hadjipantelis, J.B. Bazzano, L. Gardner, and J.A. Lozano-Galant, “Stability of steel struts with externally anchored prestressed cables”, Journal of Constructional Steel Research, vol. 164, art. no. 105790, 2020, DOI: 10.1016/j.jcsr.2019.105790.
  • [34] S. Ye, G. Fang, and Y. Zhu, “Model establishment and response analysis of slope reinforced by frame with prestressed anchors under seismic considering the prestress”, Soil Dynamics and Earthquake Engineering, vol. 122, pp. 228-234, 2019, DOI: 10.1016/j.soildyn.2019.03.034.
  • [35] N. Li, S.F. Guo, and X.C Yao, “Further study of stability analysis methods of high rock slopes”, Rock and Soil Mechanics, vol. 39, no. 2, pp. 397-416, 2018, DOI: 10.16285/j.rsm.2017.1323.
  • [36] G. Wang, B. Zhao, B. Wu, C. Zhang, and W. Liu, “Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases”, International Journal of Mining Science and Technology, in press, 2022, DOI: 10.1016/j.ijmst.2022.07.002.
  • [37] M. Yan, Y. Xia, T. Liu, and V. M. Bowa, “Limit analysis under seismic conditions of a slope reinforced with prestressed anchor cables”, Computers and Geotechnics, vol. 108, pp. 226-233, 2019, DOI: 10.1016/j.compgeo.2018.12.027.
  • [38] H. Michalak and P. Przybysz, “Subsoil movements forecasting using 3D numerical modeling”, Archives of Civil Engineering, vol. 67, no. 1, pp. 367-385, 2021, DOI: 10.24425/ace.2021.136478.
  • [39] S. Weglinski, M. Flieger-Szymańska, M. Just and D.A. Krawczyk, “Ground improvement and rebuild of a district road in complex geotechnical-engineering conditions-case study”, Archives of Civil Engineering, vol. 68, no. 2, pp. 63-82, 2022, DOI: 10.24425/ace.2022.140630.
  • [40] A. Al-Sabouni-Zawadzki, A. Zawadzki, “Simulation of a Deployable Tensegrity Column Based on the Finite Element Modeling and Multibody Dynamics Simulations”, Archives of Civil Engineering, 2020, vol. 66, no. 4, pp. 543-560, 2020, DOI: 10.24425/ace.2020.135236.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2062c8a8-e75c-4c97-94a6-15ffef26fd3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.