PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Black Silicon Obtained in Two-Step Short Wet Etching as a Texture for Silicon Solar Cells - Surface Microstructure and Optical Properties Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study a two-step short wet etching was implemented for the black silicon formation. The proposed structure consists of two steps. The first step: wet acidic etched pits-like morphology with a quite new solution of lowering the texturization temperature and second step: wires structure obtained by a metal assisted etching (MAE). The temperature of the process was chosen due to surface development control and surface defects limitation during texturing process. This allowed to maintain better minority carrier lifetime compared to etching in ambient temperature. On the top of the acidic texture the wires were formed with optimized height of 350 nm. The effective reflectance of presented black silicon structure in the wavelength range of 300-1100 nm was equal to 3.65%.
Twórcy
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta Str., Kraków, Poland
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta Str., Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta Str., Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta Str., Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta Str., Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta Str., Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta Str., Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta Str., Kraków, Poland
Bibliografia
  • [1] M. A. Green, The Passivated Emitter and Rear Cell (PERC): From conception to mass production, Solar Energy Materials&Solar Cells 143, 190-197 (2015).
  • [2] G. Grancini et al., One-Year stable perovskite solar cells by 2D/3D interface engineering, Nature Communications 8:15684 DOI: 10.1038/ncomms15684 (2017).
  • [3] A. Drygała et al, Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon, International Journal of Hydrogen Energy 41 (18), 7563-7567 (2016).
  • [4] L. A. Dobrzański et al., Influence of laser processing on polycrystalline silicon surface, Materials Science Forum 706-709, 829-834 (2012).
  • [5] G. Kumaravelu et al., Minority carrier lifetime in plasma-textured silicon wafers for solar cells, Solar Energy Materials&Solar Cells 87, 99-106 (2005).
  • [6] D. Murias et al., Black silicon formation using dry etching for solar cells applications, Materials Science and Engineering B 177, 1509-1513 (2012).
  • [7] J. Yoo, Reactive ion etching (RIE) technique for application in crystalline silicon solar cells, Solar Energy 84, 730-734 (2010).
  • [8] D. H. Macdonald et al., Texturing industrial multicrystalline silicon solar cells, Solar Energy 76, 277-283 (2004).
  • [9] H. Kohata et al., Maskless texturization of phosphorous-diffused layers for crystalline Si solar cells by plasma less dry etching with chlorine trifluoride gas, Solar Energy Materials&Solar Cells 94, 2124-2128 (2010).
  • [10] M. Abburi et al., Electrochemical isotropic texturing of mc-Si wafers in KOH solution, Materials Chemistry and Physics 139, 756-764 (2013)
  • [11] H. Robbins et al., Chemical etching of silicon: The system HF, HNO3, and H2O, Journal of Electrochemical Society 106, 505-508 (1959).
  • [12] H. Robbins et al., Chemical etching of silicon: The system HF, HNO3, and HC2H3O2, Journal of Electrochemical Society 107, 108-111 (1960).
  • [13] B. Schwartz et al., Chemical etching of silicon: A temperaturę study in the acid system, Journal of Electrochemical Society 108, 365-372 (1961).
  • [14] B. Schwartz et al., Chemical etching of silicon: Etching technology, Journal of Electrochemical Society 123, 1903-1907 (1976).
  • [15] Y. T. Cheng et al., Investigation of low-cost surface processing techniques for large-size multicrystalline silicon solar cells, International Journal of Photoenergy 2010, 1-6 (2010).
  • [16] Y. T. Cheng et al., Efficiency improved by acid texturization for multi-crystalline silicon solar cells, Solar Energy 85, 87-94 (2011)
  • [17] K. Kim et al., Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cel fabrication, Solar Energy Materials & Solar Cells 92, 960-968 (2008).
  • [18] J. Kim et al., Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask, Solar Energy Materials & Solar Cells 94, 2091-2093 (2010).
  • [19] K. Drabczyk, P. Panek, M. Lipiński, The influence of porous silicon on junction formation in silicon solar cells, Solar Energy Materials & Solar Cells 76, 545-551 (2003).
  • [20] P. Panek, M. Lipiński, H. Czternastek, Porous silicon layer as antireflection coating in solar cells, Opto-Electronics Review 8, 57-59 (2000).
  • [21] M. Lipiński, J. Cichoszewski, R. P. Socha, T. Piotrowski, Porous Silicon formation by metal-assisted chemical etching, Acta Physica Polonica A 116, 117-119 (2009).
  • [22] M. Lipiński, P. Panek, E. Bełtowska, H. Czternastek, Reduction of surface reflectivity by using double porous silicon layers, Materials Science & Engineering B 101, 297-299 (2003).
  • [23] G. Kulesza et al., Silicon solar cells efficiency improvement by the wet chemical texturization in the HF/HNO3/diluent solution, Arch. Metall. Mater. 58 (1), 291-295 (2013).
  • [24] G. Kulesza et al., Time efficient texturization of multicrystalline silicon in the HF/HNO3 solutions and its effect on optoelectronic parameters of solar cells, Archives of Civil and Mechanical Engineering 14 (4), 595-601 (2014).
  • [25] H. Han et al., Metal-assisted chemical etching of silicon and nanotechnology applications, Nano Today 9, 271-304 (2014).
  • [26] N. Wang et al., Growth of nanowires, Materials Science and Engineering R 60, 1-51 (2008).
  • [27] K-Q. Peng et al., Motility of metal nanoparticles in silicon and induced anisotropic silicon etching, Adv. Funct. Mater. 18, 3026-3035 (2008).
  • [28] K-Q. Peng et al., Silicon nanowires for photovoltaic solar Energy conversion, Adv. Funct. Mater. 23, 198-215 (2011).
  • [29] K-Q. Peng et al., Silicon nanowires for advanced energy conversion and storage, Nano Today 8, 75-97 (2013).
  • [30] S. K. Srivastava et al., Excellent antireflection properties of vertical silicon nanowire arrays, Solar Energy Materials & Solar Cells 94, 1506-1511 (2010).
  • [31] J. Tang et al., Fabrication and optical properties of silicon nanowires arrays by electroless Ag-catalyzed etching, Nano-Micro Lett. 3 (2), 129-134 (2011).
  • [32] V. T. Pham et al., Effect of nanowire length on the performance of silicon nanowires based solar cell, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 (045014), 5pp (2014).
  • [33] I-J. Lee et al., Solar cell implemented with silicon nanowires on pyramid-texture silicon surface, Solar Energy 91, 256-262 (2013).
  • [34] Y. Jiang et al., High efficiency multi-crystalline silicon solar cel with inverted pyramid nanostructure, Solar Energy 142, 91-96 (2017).
  • [35] W. Dong et al., Nondestructively decorating surface textured silicon with nanorod arrays for enhancing light harvesting, Phys. Status Solidi A 210 (12), 2542-2549 (2013).
  • [36] F. Hu et al., Pre-texturing multi-crystalline silicon wafer via a two-step alkali etching method to achieve efficient nanostructured solar cells, Solar Energy Materials & Solar Cells 159, 121-127 (2017).
  • [37] F. Es et al., Multi-crystalline silicon solar cells with metal-assisted nano-texturing using HNO3 as hole injection agent, Phys. Status Solidi RRL 10 (12), 866-869 (2016).
  • [38] F. Es et al., Metal-assisted nano-textured solar cells with SiO2/Si3N4 passivation, Solar Energy Materials & Solar Cells 160, 269-274 (2017).
  • [39] T. Rahman, Passivation of all-angle black surfaces for silicon solar cells, Solar Energy Materials & Solar Cells 160, 444-453 (2017).
  • [40] Z. Huang et al., An effective way to simultaneous realization of excellent optical and electrical performance in largescale Si nano/microstructures, Prog. Photovolt. Res. Appl. 23, 964-972 (2015).
  • [41] Y. Liu, Nanostructure formation and passivation of large-area black silicon for solar cell applications, Small 8 (9), 1392-1397 (2012).
  • [42] B. Dou et al., Enhanced electrode-contact property of silicon nano-textured solar cells via selective etching, Solar Energy 99, 95-99 (2014).
  • [43] K. Drabczyk et al., Comparison of diffused layer prepared using liquid dopant solutions and pastes for solar cell with screen printed electrodes, Microelectronics International 33 (3), 167-171 (2016).
  • [44] W. Filipowski et al., Spray-on glass solution for fabrication silicon solar cell emitter layer, Microelectronics International 34 (3), 149-153 (2017).
  • [45] K. Drabczyk at al., Influence of screen printing parameters on the front metallic electrodes geometry of solar cells, Circuit World 40 (1), 23-26 (2014).
  • [46] M. Kulakci et al., Application of Si Nanowires Fabricated by Metal-Assisted Etching to Crystalline Si Solar Cells, IEEE Journal of Photovoltaics 3 (1), 548-553 (2013).
  • [47] K. Drabczyk et al., Electrodeposition of thin metallic layer for solar cell electrodes, Soldering & Surface Mount Technology 26 (1), 18-21 (2014).
  • [48] K. Drabczyk et al., Copper deposition on screen printed electrical paths for solar cell application, Circuit World 41 (3), 98-101 (2015).
  • [49] K. Drabczyk et al,. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts, Solar Energy 126, 14-21 (2016).
Uwagi
EN
1. This research was financed by Polish National Science Centre under the decision no. 2013/09/N/ST8/04165. The part of the investigations concerning alkaline texturization with etched wires was financed by IMMS PAS as a statutory work. The SEM examination and optical measurements were performed in Accredited Testing Laboratories at the IMMS PAS (ILACMRA).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-205bac1a-80c1-4a6f-8727-af061e2c7796
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.