PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the average fire gas temperature in a mine drift with multiple fires

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The average fire gas temperature of multiple fires in a mine drift with longitudinal ventilation is investigated. The output of a quasi-steady model is investigated and compared with experimental results from model scale fire experiments. During the analysis it was found that the calculated average fire gas temperature of the model correlates quite well with the measured temperature, except for the period when the fire closest to the measuring point reached a peak of heat release rate. This poor correlation is likely due to flame impingement as the distance to the nearest fire decreases. Uncertainty of the calculations is caused by the fire gas temperature at the site of each individual fire and further studies into the fire growth rate and maximum heat release rates of multiple fires are recommended in order to remedy this uncertainty. When calculating the average fire gas temperature, a key parameter is determined with respect to the smoke spread in a mine drift as well as the risk of fire spread.
Rocznik
Strony
226--238
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
Bibliografia
  • 1. Beard, A., & Carvel, R. (2005). The handbook of tunnel fire safety. London: Thomas Telford Ltd.
  • 2. Bhatti, M. S., & Shah, R. K. (1987). Turbulent and transition flow convective heat transfer in ducts. In S. Kakaç, R. K. Shah, & W. Aung (Eds.). Handbook of single-phase convective heat transfer. Wiley-Interscience.
  • 3. Chang, X., & Greuer, R. E. (1985). Simplified method to calculate the heat transfer between mine air and mine rock. Proceedings of the 2nd US Mine Ventilation Symposium (pp. 429-438). Reno: CRC Press.
  • 4. Chang, X., & Greuer, R. (1987). A mathematical model for mine fires. Proceedings of the 3rd Mine Ventilation Symposium (pp. 453-462). University Park: Society for Mining Metallurgy.
  • 5. Dahlberg, M. (1994). Error analysis for heat release measurements with the SP industry calorimeter. SP Report 1994:29 Borås: Swedish National Testing and Research Institute.
  • 6. Dziurzynski, W., Tracz, J., & Trutwin, W. (1988). Simulation of mine fires. In A. D. S. Gillies (Ed.). 4th International Mine Ventilation Congress, Brisbane Australia 3-6 July 1988 (pp. 357-363). Melbourne: Australasian Institute of Mining and Metallurgy.
  • 7. Hansen, R. (2017a). Heat losses of fire gases in a mine drift with rough rock surface and forced longitudinal ventilation. Brisbane: The University of Queensland.
  • 8. Hansen, R. (2017b). Multiple fires in a mine drift with longitudinal ventilation. Brisbane: The University of Queensland.
  • 9. Hansen, R., & Ingason, H. (2010). Model scale fire experiments in a model tunnel with wooden pallets at varying distances. Research Studies in Sustainable Technology 2010, Vol. 8. Västerĺs: Mälardalen University.
  • 10. Hansen, R., & Ingason, H. (2011). An engineering tool to calculate heat release rates of multiple objects in underground structures. Fire Safety Journal, 46(4), 194-203. https://doi.org/10.1016/j.firesaf.2011.02.001.
  • 11. Hansen, R., & Ingason, H. (2012). Heat release rates of multiple objects at varying distances. Fire Safety Journal, 52, 1-10. https://doi.org/10.1016/j.firesaf.2012.03.007.
  • 12. Heskestad, G. (2008). Fire plumes, flame height and air entrainment. In P. J. Dinenno, D. Drysdale, C. L. Beyler, W. D. Walton, & R. L. P. Custer (Eds.). The SFPE Handbook of Fire Protection Engineering(4th ed.). Quincy, Mass: National Fire Protection Association 2-1-2.20.
  • 13. Hottel, H. C. (1954). Radiant heat transmission. In W. H. McAdams (Ed.). Heat transmission (chapter 4). New York: McGraw-Hill.
  • 14. Incropera, F. P., Dewitt, D. P., Bergman, T. L., & Lavine, A. S. (2007). Fundamentals of heat and mass transfer (6th ed.). Hoboken: John Wiley & Sons Inc.
  • 15. Ingason, H. (2005). Model scale tunnel fire tests. SP report 2005:49Borĺs: Swedish National Testing and Research Institute.
  • 16. Ingason, H., Gustavsson, S., & Dahlberg, M. (1994). Heat release rate measurements in tunnel fires. SP Report 1994:08 Borås: Swedish National Testing and Research Institute.
  • 17. Ji, J., Wan, H., Gao, Z., Fu, Y., Sun, J., Zhang, Y., et al. (2016). Experimental study on flame merging behaviors from two pool fires along the longitudinal centerline of model tunnel with natural ventilation. Combustion and Flame, 173, 307-318. https://doi.org/10.1016/j.combustflame.2016.08.020.
  • 18. McPherson, M. J. (1986). The analysis and simulation of heat flow into underground airways. International Journal of Mining and Geological Engineering, 4(3), 165-196. https://doi.org/10.1007/BF01560715.
  • 19. Mills, A. F. (1962). Experimental investigation of turbulent heat transfer in the entrance region of a circular conduit. Journal of Mechanical Engineering Science, 4(1), 63-77. https://doi.org/10.1243/JMES_JOUR_1962_004_010_02.
  • 20. Newman, J. S., & Tewarson, A. (1983). Flame propagation in ducts. Combustion and Flame, 51, 347-355. https://doi.org/10.1016/0010-2180(83)90112-8.
  • 21. Simode, E. (1985). Simulation of thermal and aerodynamic effects of a fire in a complex underground ventilation network. Proceedings of the 2nd US Mine Ventilation Symposium (pp. 455-459). Reno: CRC Press.
  • 22. Wan, H., Gao, Z., Ji, J., Li, K., Sun, J., & Zhang, Y. (2017). Experimental study on ceiling gas temperature and flame performances of two buoyancy-controlled propane burners located in a tunnel. Applied Energy, 185(1), 573-581. https://doi.org/10.1016/j.apenergy.2016.10.131.
  • 23. Wolski, J. K. (1995). Modeling of heat exchange between flowing air and tunnel walls. In A. M. Wala (Ed.). Proceedings of the 7th US Mine Ventilation Symposium, June 5-7, 1995, Lexington, Kentucky (pp. 207-212). Littleton, CO: Society for Mining, Metallurgy, and Exploration.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20524156-33ac-4ab8-a1fc-6d2ee49b6ab8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.