PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal and fluid analysis on effects of a nanofluid outside of a stretching cylinder with magnetic field using the Differential Quadrature Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, magnetohydrodynamic flow (MHD) of a nonofluid over a stretching cylinder is investigated numerically. The Differential Quadrature Method (DQM) is applied for solving the governing equations. The influence of relevant parameters such as the magnetic parameter, the solid volume fraction of nanoparticles and the type of nanofluid on the flow, heat transfer, Nusselt number and skin friction coefficient is discussed. Also, comparison with the published results is presented. The results show that the Nusselt number increases with growth in the volume fraction coefficient and Reynolds number but decreases with the magnetic parameter.
Rocznik
Strony
517--528
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Young Reseachers and Elite Club, Sari Branch, Islamic Azad University, Sari, Iran
autor
  • Department of Mechanical Engineering, Esfarayen University of Technology, Esfarayen, North Khorasan, Iran
autor
  • Department of Mechanical Engineering, Babol University of Technology, Babol, Iran
autor
  • Department of Mechanical Engineering, Babol University of Technology, Babol, Iran
Bibliografia
  • 1. Aminossadati S.M., Ghasemi B., 2009, Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, European Journal of Mechanics – B/Fluids, 28, 630-640
  • 2. Atouei S.A., Hosseinzadeh Kh., Hatami M., Ghasemi Seiyed E., Sahebi S.A.R., Ganji D.D., 2015, Heat transfer study on convectiveeradiative semi-spherical fins with temperaturedependent properties and heat generation using efficient computational methods, Applied Thermal Engineering, 89, 299-305
  • 3. Bellman R.E., Kashef B.G., Casti J., 1972, Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations, Journal of Computational Physics, 10, 40-52
  • 4. Choi S.U.S., 1995, Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Engineering Division, 231, 99-105
  • 5. Darzi M., Vatani M., Ghasemi S.E., Ganji D.D., 2015, Effect of thermal radiation on velocity and temperature fields of a thin liquid film over a stretching sheet in a porous medium, European Physical Journal Plus, 130, 100
  • 6. Ghasemi S.E., Hatami M., Ganji D.D., 2013, Analytical thermal analysis of air-heating solar collectors, Journal of Mechanical Science and Technology, 27, 11, 3525-3530
  • 7. Ghasemi S.E., Hatami M., Ganji D.D., 2014a, Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation, Case Studies in Thermal Engineering, 4, 1-8
  • 8. Ghasemi S.E., Hatami M., Hatami J., Sahebi S.A.R., Ganji D.D., 2016a, An efficient approach to study the pulsatile blood flow in femoral and coronary arteries by Differential Quadrature Method, Physica A, 443, 406-414
  • 9. Ghasemi S.E., Hatami M., Kalani Sarokolaie A., Ganji D.D., 2015a, Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods, Physica E, 70, 146-156
  • 10. Ghasemi S.E., Hatami M., Mehdizadeh Ahangar GH.R., Ganji D.D., 2014b, Electrohydrodynamic flow analysis in a circular cylindrical conduit using Least Square Method, Journal of Electrostatics, 72, 47-52
  • 11. Ghasemi S.E., Jalili Palandi S., Hatami M., Ganji D.D., 2012, Efficient analytical approaches for motion of a spherical solid particle in plane couette fluid flow using nonlinear methods, The Journal of Mathematics and Computer Science, 5, 2, 97-104
  • 12. Ghasemi S.E., Valipour P., Hatami M., Ganji D.D., 2014c, Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method, Journal of Central South University, 21, 4592-4598
  • 13. Ghasemi S.E., Vatani M., Ganji D.D., 2015b, Efficient approaches of determining the motion of a spherical particlein a swirling fluid flow using weighted residual methods, Particuology, 23, 68-74
  • 14. Ghasemi S.E., Vatani M., Hatami M., Ganji D.D., 2016b, Analytical and numerical investigation of nanoparticles effect on peristaltic fluid flow in drug delivery systems, Journal of Molecular Liquids, 215, 88-97
  • 15. Ghasemi S.E., Zolfagharian A., Ganji D.D., 2014d, Study on motion of rigid rod on a circular surface using MHPM, Propulsion and Power Research, 3, 3, 159-164
  • 16. Ghasemi S.E., Zolfagharian A., Hatami M., Ganji D.D., 2015c, Analytical thermal study on nonlinear fundamental heat transfer cases using a novel computational technique, Applied Thermal Engineering, http://dx.doi.org/10.1016/j.applthermaleng.2015.11.120
  • 17. Harada N., Tsunoda K., 1998, Study of a disk MHD generator for nonequilibrium plasma generator (NPG) system, Energy Conversion and Management, 39, 493-503
  • 18. Hatami M., Ganji D.D., 2014, Motion of a spherical particle in a fluid forced vortex by DQM and DTM, Particuology, 16, 206-212
  • 19. Hatami M., Ghasemi S.E., Sahebi S.A.R., Mosayebidorcheh S., Ganji D.D., Hatami J., 2015d, Investigation of third-grade non-Newtonian blood flow in arteries under periodic body acceleration using multi-step differential transformation method, Applied Mathematics and Mechanics, 36, 11, 1449-1458
  • 20. Ho C.J., Chen M.W., Li Z.W., 2008, Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, International Journal of Heat and Mass Transfer, 51, 4506-4516
  • 21. Ishak A., Nazar R., Pop I., 2006, Magnetohydrodynamic stagnation-point flow towards a stretching vertical sheet, Magnetohydrodynamics, 42, 17-30
  • 22. Ishak A., Nazar R., Pop I., 2008, Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder, Energy Conversion and Management, 49, 3265-3269
  • 23. Magyari E., Keller B., 1999, Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, Journal of Physics D: Applied Physics, 32, 577-585
  • 24. Mahapatra T.R., Gupta A.S., 2001, Magnetohydrodynamic stagnation-point flow towards a stretching sheet, Acta Mechanica, 152, 191-196
  • 25. Misagh Imani S., Goudarzi A.M., Ghasemi S.E., Kalani A., Mahdinejad J., 2014, Analysis of the stent expansion in a stenosed artery using finite element method: Application to stent versus stent study, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 228, 10, 996-1004
  • 26. Moghimi M.A., Tabaei H., Kimiaeifar A., 2013, HAM and DQM solutions for slip flow over a flat plate in the presence of constant heat flux, Mathematical and Computer Modelling, 58, 1704-1713
  • 27. Moghimi M.A., Talebizadeh P., Mehrabian M.A., 2011, Heat generation/absorption effects on magnetohydrodynamic natural convection flow over a sphere in a non-Darcian porous medium, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 225, 29-39
  • 28. Mohammadian E., Ghasemi S.E., Poorgashti H., Hosseini M. and Ganji D.D., 2015, Thermal investigation of Cu-water nanofluid between two vertical planes, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 229, 1, 36-43
  • 29. Oztop H.F., Abu-Nada E., 2008, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow, 29, 1326-1336
  • 30. Quan J.R., Chang C.T., 1989, New insights in solving distributed system equations by quadrature methods – I. Analysis, Computers and Chemical Engineering, 13, 779-788
  • 31. Shang J.S., 2001, Recent research in magneto-aerodynamics, Progress in Aerospace Sciences, 37, 1-20
  • 32. Shu C., 2000, Differential Quadrature and its Application in Engineering, Springer
  • 33. Talebizadeh P., Moghimi M.A., Kimiaeifar A., Ameri M., 2011, Numerical and analytical solution for natural convection flow with thermal radiation and mass transfer past a moving vertical porous plate by DQM and HAM, International Journal of Computational Methods, 8, 611-631
  • 34. Valipour P., Ghasemi S.E., Vatani M., 2015, Theoretical investigation of micropolar fluid flow between two porous disks, Journal of Central South University, 22, 2825-2832
  • 35. Vatani M., Ghasemi S.E., Ganji D.D., 2014, Investigation of micropolar fluid flow between a porous disk and a nonporous disk using efficient computational technique, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, DOI:10.1177/0954408914557375
  • 36. Wang C.Y., 1988, Fluid flow due to a stretching cylinder, Physics of Fluids, 31, 466-468
  • 37. Ziabakhsh Z., Domairry G., Mozaffari M., Mahbobifar M., 2010, Analytical solution of heat transfer over an unsteady stretching permeable surface with prescribed wall temperature, Journal of the Taiwan Institute of Chemical Engineers, 41, 169-177
  • 38. Ziabakhsh Z., Domairry G., 2009, Solution of the laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field by using the homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation, 14, 1284-1294
  • 39. Zolfagharian A., Ghasemi S.E., Misagh I., 2014a, A multi-objective, active fuzzy force controller in control of flexible wiper system, Latin American Journal of Solids and Structures, 11, 9, 1490-1514
  • 40. Zolfagharian A., Noshadi A., Ghasemi S.E., Md. Zain M.Z., 2014b, A nonparametric approach using artificial intelligence in vibration and noise reduction of flexible systems, Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 228, 8, 1329-1347
  • 41. Zolfagharian A., Noshadi A., Khosravani M.R., Md. Zain M.Z., 2014c, Unwanted noise and vibration control using finite element analysis and artificial intelligence in flexible wiper system, Applied Mathematical Modelling, 38, 2435-2453
  • 42. Zolfagharian A., Valipour P., Ghasemi S.E., 2015, Fuzzy force learning controller of flexible wiper system, Neural Computing and Application, 26, 2, DOI: 10.1007/s00521-015-1869-0
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-204bc2dd-3eb4-4983-b48f-3f55afb2a855
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.