PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diagnostics of Rotor Damages of Three-Phase Induction Motors Using Acoustic Signals and SMOFS-20-EXPANDED

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A fault diagnostics system of three-phase induction motors was implemented. The implemented system was based on acoustic signals of three-phase induction motors. A feature extraction step was performed using SMOFS-20-EXPANDED (shortened method of frequencies selection-20-Expanded). A classification step was performed using 3 classifiers: LDA (Linear Discriminant Analysis), NBC (Naive Bayes Classifier), CT (Classification Tree). An analysis was carried out for incipient states of three-phase induction motors measured under laboratory conditions. The author measured and analysed the following states of motors: healthy motor, motor with one faulty rotor bar, motor with two faulty rotor bars, motor with faulty ring of squirrel-cage. Measured and analysed states were caused by natural degradation of parts of the machine. The efficiency of recognition of the analysed states was good. The proposed method of fault diagnostics can find application in protection of three-phase induction motors.
Rocznik
Strony
507--515
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr., fot.
Twórcy
autor
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Attoui I., Omeiri A. (2015), Fault Diagnosis of an Induction Generator in a Wind Energy Conversion System Using Signal Processing Techniques, Electric Power Components and Systems, 43, 20, 2262-2275.
  • 2. Będkowski в., Baranski M. (2014), Electrical machine with permanent magnets as a vibration sensor - a test stand model, International Conference on Electrical Machines (ICEM), 1590-1593.
  • 3. DUDEK-DYDUCH E., TADEUSIEWICZ R., HORZYK A. (2009), Neural network adaptation process effectiveness dependent of constant training data availability, Neurocomputing, 72, 13-15, 3138-3149.
  • 4. Duspara M., Sabo K., Stoic A. (2014), Acoustic emission as tool wear monitoring, Tehnicki Vjesnik - Technical Gazette, 21, 5, 1097-1101.
  • 5. Figlus T., Liscak S., Wilk A., Aazarz В. (2014), Condition monitoring of engine timing system by using wavelet packet decomposition of a acoustic signal, Journal of Mechanical Science and Technology, 28, 5, 1663-1671.
  • 6. Glowacz A. (2015), Recognition of Acoustic Signals of Synchronous Motors with the Use of MoFS and Selected Classifiers, Measurement Science Review, 15, 4, 167-175.
  • 7. Glowacz A., Glowacz A., Glowacz Z. (2012), Diagnostics of Direct Current generator based on analysis of monochrome infrared images with the application of cross-sectional image and nearest neighbor classifier with Euclidean distance, Przeglad Elektrotechniczny, 88, 6, 154-157.
  • 8. Glowacz W., Glowacz Z. (2015), Diagnostics of separately excited DC motor based on analysis and, recognition of signals using FFT and Bayes classifier, Archives of Electrical Engineering, 64, 1, 29-35.
  • 9. Glowacz Z., Glowacz A. (2007), Simulation language for analysis of discrete-continuous electrical systems (SESL2), 26th IASTED International Conference on Modelling, Identification and Control Location: Innsbruck, Austria, 94-99.
  • 10. Glowacz Z., Kozik J. (2012), Feature selection of the armature windings short circuit fault in synchronous motor using genetic algorithm and the Mahalanobis distance, Przeglad Elektrotechniczny, 88, 2, 204-207.
  • 11. Glowacz Z., Zdrojewski A. (2009), Diagnostics of commutator DC motor using spectral analysis method, Przeglad Elektrotechniczny, 85, 1, 147-150.
  • 12. Gonzalez-Cordoba JL., Granados-Lieberman D., Osornio-Rios RA., Romero-Troncoso RJ., De Santiago-Perez J. J., Valtierra-Rodriguez М. (2016), Methodology for Overheating Identification on Induction Motors under Voltage Unbalance Conditions in Industrial Processes, Journal of Scientific & Industrial Research, 75, 2, 100-107.
  • 13. Gorny Z., Kluska-Nawarecka S., Wilk-Kolodziejczyk D., Regulski K. (2015), Methodology for the construction of a rule-based knowledge base enabling the selection of appropriate bronze heat treatment parameters using rough sets, Archives of Metallurgy and Materials, 60, 1, 309-312.
  • 14. Hachaj T. (2012), Pattern Classification Methods for Analysis and Visualization of Brain Perfusion CT Maps, Computational Intelligence Paradigms in Advanced Pattern Classification, Book Series: Studies in Computational Intelligence, 386, 145-170.
  • 15. Hachaj T., Ogiela MR., Koptyra K. (2015), Application of Assistive Computer Vision Methods to Oyama Karate Techniques Recognition, Symmetry-Basel, 7, 4, 1670-1698.
  • 16. Hemmati F., Alqaradawi M., Gadala MS. (2016), Rolling element bearing fault diagnostics using acoustic emission technique and advanced signal processing, Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology, 230, 1, 64-77.
  • 17. Hwang DH., Youn YW,, Sun JH., Choi КН., Lee JH., Kim YH. (2015), Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals, Journal of Electrical Engineering & Technology, 10, 4, 1558-1565.
  • 18. Irfan M., Saad N., Ibrahim R., Asirvadam VS. (2015), An on-line condition monitoring system for induction motors via instantaneous power analysis, Journal of Mechanical Science and Technology, 29, 4, 1483¬1492.
  • 19. IZADBAKHSH M., REZVANI A., GANDOMKAR M. (2015), Dynamic response improvement of hybrid system by implementing ANN-GA for fast variation of photovoltaic irradiation and FLC for wind turbine, Archives of Electrical Engineering, 64, 2, 291-314.
  • 20. Jaworek-Korjakowska J., Kleczek P. (2016), Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence, BioMed Research International, Article Number: 8934242.
  • 21. Jena DP., Panigrahi SN. (2015), Automatic gear and bearing fault localization using vibration and acoustic signals, Applied Acoustics, 98, 20-33.
  • 22. Jiang Y., Li ZX., Zhang C., Hu C., Peng Z. (2016), On the bi-dimensional variational decomposition applied to nonstationary vibration signals for rolling bearing crack detection in coal cutters, Measurement Science and Technology, 27, 6, Article Number: 065103.
  • 23. Jozwik J. (2016), Identification and monitoring of noise sources of CNC machine tools by acoustic Holography methods, Advances in Science and Technology¬Research Journal, 10, 30, 127-137.
  • 24. Jun S., Kochan O. (2014), Investigations of Thermocouple Drift Irregularity Impact on Error of their Inhomogeneity Correction, Measurement Science Review, 14, 1, 29-34.
  • 25. JUN S., KOCHAN O., KOCHAN V., WANG CZ. (2016), Development and Investigation of the Method for Compensating Thermoelectric Inhomogeneity Error, International Journal of Thermophysics, 37, 1. http://dx.doi.org/10.1007/s10765-015-2025-x.
  • 26. Kalafat S., Sause MGR. (2015), Acoustic emission source localization by artificial neural networks, Structural Health Monitoring-An International Journal, 14, 6, 633-647.
  • 27. Kang TJ., Kim J., Bin Lee S., Yung C. (2015), Experimental Evaluation of Low-Voltage Offline Testing for Induction Motor Rotor Fault Diagnostics, IEEE Transactions on Industry Applications, 51, 2, 1375-1384.
  • 28. Kantoch E., Augustyniak P., Markiewicz M., Prusak D. (2014), Monitoring activities of daily living based on wearable wireless body sensor network, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Book Series: IEEE Engineering in Medicine and Biology Society Conference Proceedings, 586-589.
  • 29. Karandikar J., McLeay T., Turner S., Schmitz T. (2015), Tool wear monitoring using naive Bayes classifiers, International Journal of Advanced Manufacturing Technology, 77, 9-12, 1613-1626.
  • 30. Kluska-Nawarecka S., Wilk-Kolodziejczyk D., Dajda J., Macura M., Regulski K. (2014), Computer-Assisted Integration of Knowledge in the Context of Identification of the Causes of Defects in Castings, Archives of Metallurgy and Materials, 59, 2, 743-746.
  • 31. Kozielski M., Sikora M., Wrobel L. (2016), Decision support and maintenance system for natural hazards, processes and equipment monitoring, Eksploatacja i Niezawodność-Maintenance and Reliability, 18, 2, 218-228. http://dx.doi.org/10.17531/ein.2016.2.9
  • 32. Krolczyk G. M., Krolczyk J. B., Legutko S., Hunjet A. (2014), Effect of the disc processing technology on the vibration level of the chipper during operations, Tehnicki Vjesnik-Technical Gazette, 21, 2, 447¬450.
  • 33. Krolczyk J. B., Gapinski в., Krolczyk G. M., Samardzic I., Maruda R. W., Soucek K., Legutko S., Nieslony P., Javadi Y., Stas L. (2016a), Topographic inspection as a method of weld joint diagnostic, Tehnicki Vjesnik-Technical Gazette, 23, 1, 301-306.
  • 34. Krolczyk G. M., Krolczyk J. B., Maruda R. W., Legutko S., Tomaszewski M. (2016b), Metrological changes in surface morphology of high-strength steels in manufacturing processes, Measurement, 88, 176-185.
  • 35. Kulka Z. (2011), Advances in Digitization of Microphones and Loudspeakers, Archives of Acoustics, 36, 2, 419-436.
  • 36. Kupiec E., Przyborowski W. (2015), Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine, Archives of Electrical Engineering, 64, 1, 107-117.
  • 37. Lara R., Jimenez-Romero R., Perez-Hidalgo F., Redel-Macias MD. (2015), Influence of constructive parameters and power signals on sound quality and air¬borne noise radiated by inverter-fed induction motors, Measurement, 73, 503-514.
  • 38. Li ZX., Jiang Y., Hu C., Peng Z. (2016), Recent progress on decoupling diagnosis of hybrid failures in gear transmission systems using vibration sensor signal: A review, Measurement, 90, 4-19.
  • 39. Ma SH., Chen XQ. (2015), The Acoustic Emission Signal Recognition based on Wavelet Transform and RBF Neural Network, International Journal of Grid and Distributed Computing, 8, 2, 167-175.
  • 40. Marzec M., Koprowski R., Wrobel Z. (2015), Methods of face localization in thermograms, Biocybernetics and Biomedical Engineering, 35, 2, 138-146.
  • 41. Michalak M., Sikora M., Sobczyk J. (2013), Analysis of the longwall conveyor chain based on a harmonic analysis, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 15, 4, 332-336.
  • 42. Mika D., Jozwik J. (2016), Normative measurements of noise at CNC machines work stations, Advances in Science and Technology-Research Journal, 10, 30, 138¬143.
  • 43. Panek D., Skalski A., Gajda J., Tadeusiewicz R. (2015), Acoustic analysis assessment in speech pathology detection, International Journal of Applied Mathematics and Computer Science, 25, 3, 631-643.
  • 44. Perun G., Stanik Z. (2015), Evaluation of state of rolling bearings mounted in vehicles with use of vibration signals, Archives of Metallurgy and Materials, 60, 3, 1679-1683.
  • 45. Pribil J., Pribilova A. (2014), GMM-Based Evaluation of Emotional Style Transformation in Czech and Slovak, Cognitive Computation, 6, 4, 928-939.
  • 46. Roj J., Cichy A. (2015), Method of Measurement of Capacitance and Dielectric Loss Factor Using Artificial Neural Networks, Measurement Science Review, 15, 3, 127-131.
  • 47. Sapena-Bano A., Pineda-Sanchez M., Puche- Panadero R., Martinez-Roman J., Matic D. (2015), Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current’s FFT, IEEE Transactions on Instrumentation and Measurement, 64, 11, 3137-3146.
  • 48. Sharma A., Paliwal K. (2015), Linear discriminant analysis for the small sample size problem: an overview, International Journal of Machine Learning and Cybernetics, 6, 3, 443-454.
  • 49. Smalcerz A. (2013), Aspects of Application of Industrial Robots in Metallurgical Processes, Archives of Metallurgy and Materials, 58, 1, 203-209.
  • 50. SMOLNICKI T., HARNATKIEWICZ P., STANCO M. (2010), Degradation of a geared bearing of a stancher, Archives of Civil and Mechanical Engineering, 10, 2, 131-139.
  • 51. Stepien K. (2014), Research on a surface texture analysis by digital signal processing methods, Tehnicki Vjesnik-Technical Gazette, 21, 3, 485-493.
  • 52. Stolinski в., Ziolko в. (2015), Detecting Recorded Speech for Polish Language, Proceedings of the 2015 12th IEEE Africon International Conference - Green Innovation for African Renaissance (Africon), Book Series: Africon.
  • 53. Valis D., Pietrucha-Urbanik K. (2014), Utilization of diffusion processes and fuzzy logic for vulnerability assessment, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16, 1, 48-55.
  • 54. Van Hecke в., Yoon J., He D. (2016), Low speed bearing fault diagnosis using acoustic emission sensors, Applied Acoustics, 105, 35-44.
  • 55. Vetrichelvan G., Sundaram S., Kumaran SS., Velmurugan P. (2015), An investigation of tool wear using acoustic emission and genetic algorithm, Journal of Vibration and Control, 21, 15, 3061-3066.
  • 56. Wegiel T., Sulowicz M., Borkowski D. (2007), A distributed system of signal acquisition for induction motors diagnostic, 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics & Drives, Cracow, Poland, 261-265.
  • 57. Wickramarachchi DC., Robertson BL., Reale M., Price CJ., Brown J. (2016), HHCART: An oblique decision tree, Computational Statistics & Data Analysis, 96, 12-23.
  • 58. Yagami Y., Araki C., Mizuno Y., Nakamura H. (2015), Turn-to-Turn Insulation Failure Diagnosis of Stator Winding of Low Voltage Induction Motor with the Aid of Support Vector Maschine, IEEE Transactions on Dielectrics and Electrical Insulation, 22, 6, 3099¬3106.
  • 59. Yoon J., He D. (2015), Planetary gearbox fault diagnostic method using acoustic emission sensors, IET Science Measurement & Technology, 9, 8, 936-944.
  • 60. Zhang YG., Yang JY., Wang KC., Wang ZP. (2015), Wind Power Prediction Considering Nonlinear Atmospheric Disturbances, Energies, 8, 1, 475-489.
  • 61. Zhang X., Feng NZ., Wang Y., Shen Y. (2015), Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy, Journal of Sound and Vibration, 339, 419-432.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2045a8c4-db9c-4b43-89ef-7250fc90d424
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.