PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Bending Failure Behavior of the Glass Fiber Reinforced Composite I-Beams Formed by a Novel Bending Pultrusion Processing Technique

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The glass fiber reinforced resin matrix composite I-beams were designed and formed via a type of novel bending pultrusion processing technique, and the three-point bending tests were carried out to analyze the mechanical bending performances. The obtained results show that the main failure mode of the composite I-beam under the bending load is the upper structure (top flange) cracks along the length direction of the fibers, and the cracks simultaneously propagate downwards in the vertical direction. The bifurcated cracks can be found at the junction area between the top flange and web. In addition, the main bending failure mechanism of the composite I-beam includes the matrix cracking, propagation of cracks, and final fracture failure. In particular, noting that when the crack reaches the I-shaped neck position, the lateral bifurcation occurs, and the resulting secondary cracks further extend in two directions, which leads to the serious damage between the top flange and web, and the ultimate fracture failure occurs.
Rocznik
Strony
172--176
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • College of Textile Science and Engineering, Zhejiang Sci-Tech University, Zhejiang, People’s Republic of China
  • The Opening Project of Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang, People’s Republic of China
autor
  • School of Materials Science, Shanghai Dianji University, Shanghai, People’s Republic of China
  • School of Mechanical Engineering, Shanghai Dianji University, Shanghai, People’s Republic of China
autor
  • School of Materials Science, Shanghai Dianji University, Shanghai, People’s Republic of China
Bibliografia
  • [1] Garoushi, S. (2018). Dental composite materials for direct restorations. Fiber Reinforced Composites, 119–128.
  • [2] Huang, Y., King, D. R., Cui, W., Sun, T. L., Guo, H., et al. (2019). Superior fracture resistance of fiber reinforced polyampholyte hydrogels achieved by extraordinarily large energy-dissipative process zones. Journal of Materials Chemistry A, 7(22), 13431–13440.
  • [3] Rahman, A., Zakir, N., Abu-Mahfouz, I. (2018). Hybrid aluminum matrix composites (HAMCs) using powder metallurgy method. MS&T18, 1304–1311.
  • [4] Priyanka, P., Dixit, A., Mali, H. S. (2019). High strength Kevlar fiber reinforced advanced textile composites. Iranian Polymer Journal, 28, 621–638.
  • [5] Galich, I. P., Viacheslav, S., Rudykh, S. (2018). Shear wave propagation in finitely deformed 3D fiber-reinforced composites. International Journal of Solids & Structures, 135, 303–304.
  • [6] Xu, J., Mi, S., Ming, W., An, Q., Chen, M. (2018). Research advances in cutting modeling of fiber reinforced polymer composites. Aeronautical Manufacturing Technology, 61(22), 16–23. (In Chinese)
  • [7] Benmokrane, B., Ali, A. H. (2018). Durability and long-term performance of fiber-reinforced polymer as a new civil engineering material. International Congress on Polymers in Concrete, 49–59.
  • [8] Aguilar, J., Winters, D., Sen, R., Mullins, G., Stokes, M.(2018). Fiber-reinforced polymer pile repair incorporating cathodic protection. Transportation Research Record, 2150(1), 111–118.
  • [9] Sajeeb, A. M., Babu, C. S., Arif, M. M. (2018). Evaluation of mechanical properties of natural fiber reinforced melamine urea formaldehyde (MUF) resin composites. Materials Today: Proceedings, 5(2), 6764–6769.
  • [10] Acosta-Enriquez, E. B., Pech-Canul, M. I., Acosta-Enriquez, M. C. (2018). A revamped classification of composite materials. MA&T18, 1319–1325.
  • [11] Condruz, M. R., Puscasu, C., Voicu, L. R., Vintila, I. S., Mirea, D. A. (2018). Fiber reinforced composite materials for proton radiation shielding. Materiale Plastice, 55(1), 5–8.
  • [12] Wang, Z., Zhao, X. L., Xian, G., Wu, G., Raman, R. K. S., Al-Saadi, S. (2018). Effect of sustained load and seawater and sea sand concrete environment on durability of basalt and glass-fibre reinforced polymer (b/gfrp) bars. Corrosion Science, 138, 200–218.
  • [13] Hung, P., Lau, K., Fox, B., Hameed, N., Lee, J., Hui, D. (2018). Surface modification of carbon fibre using graphene-related materials for multifunctional composites. Composites Part B Engineering, 133, 240–257.
  • [14] Liu, X., Wang, X., Xie, K., Wu, Z., Li, F. (2020). Bond behavior of basalt fiber reinforced polymer bars embedded in concrete under mono-tensile and cyclic loads. International Journal of Concrete Structures & Materials, 14(1), 1–15.
  • [15] Shi, W., Han, D., Liu, Y., Hou, Y. (2019). Surface quality of aramid fiber composites with ultra-low temperature and micro-milling. China Mechanical Engineering, 30(9), 1056–1064. (In Chinese)
  • [16] Ma, D., Fang, Y., Wang, Q., Wang, Y., Xu, Q. (2018). Tension-compression fatigue behavior of high performance glass fiber reinforced resin matrix composites. Aerospace Materials & Technology, 4, 63–66. (In Chinese)
  • [17] Hofstatter, T., Pedersen, D. B., Tosello, G., Hansen, H. N. (2017). Applications of fiber-reinforced polymers in additive manufacturing. Procedia Cirp, 66, 312–316.
  • [18] Asl, M. E., Niezrecki, C., Sherwood, J., Avitabile, P. (2017). Vibration prediction of thin-walled composite I-beams using scaled models. Thin-Walled Structures, 113, 151–161.
  • [19] Qin, X., Liu, H., Wu, C., Gu, Z. (2018). Semi-analytical solution of horizontally composite curved I-beam with partial slip. Steel and Composite Structures, 27(1), 1–12.
  • [20] Qin, X., Liu, H., Wu, C., Gu, Z. (2016). A trigonometric analytical solution of simply supported horizontally curved composite I-beam considering tangential slips. Mathematical Problems in Engineering, 2016, 1–12.
  • [21] Lacki, P., Derlatka, A., Winowiecka, J. (2019). Analysis of the composite I-beam reinforced with PU foam with the addition of chopped glass fiber. Composite Structures, 218, 60–70.
  • [22] Naccache, F., El Fatmi, R. (2018). Buckling analysis of homogeneous or composite I-beams using a 1D refined beam theory built on Saint Venant's solution. Thin-Walled Structures, 127, 822–831.
  • [23] Alaedini, S., Kabir, M. Z., Al-Mahaidi, R. (2021). Stability performance of thin-walled pultruded beams with geometric web-flange junction imperfections. Journal of Building Engineering, 33.
  • [24] Shinokubo, M., Ohtani, A., Nakai, A., Hamada, H., Uozumi, T. (2010). Bending properties of fiber-hybrid i-shaped braided composite. Fiber, 66(11), 267–271.
  • [25] Zhu, P., Fan, H., Zhou, Y. (2016). Flexural behavior of aluminum i-beams strengthened by pre-stressed cfrp tendons. Construction & Building Materials, 122(30), 607–618.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2042dd0a-5cd8-4600-954f-2fcf7ba31446
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.