PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of the causes of production equipment failure using machine learning methods a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper aims to present the possibility of using decision tree (DT) to increase the efficiency and effectiveness of maintenance activities by identifying the probable cause of failure based on historical data. Design/methodology/approach: This study used classifiers based on General Chi-square Automatic Interaction Detector (CHAID) and random forests. Using this group of classifiers brings with it faster u performance, the possibility to process symbolic data directly, and the possibility to add a tree as part of interactive tree building. A separate tree was built for each input parameter to aggregate the results from both trees by considering them together. The proposed solution also analyzes the importance of features (input data). Findings: Based on the research conducted, we have shown that using ML techniques can improve the accuracy of decisions regarding the type of maintenance work that should be carried out to efficiently and effectively remove failures and reduce losses caused by machine downtime. Research limitations/implications: The research is worth extending to use other novel artificial intelligence methods to compare the developed models. A limitation was the amount of data. As new data becomes available, the developed models should be trained to respond to the new data and better adapt to it. Practical implications: Relatively simple AI-based solutions such as CHAID and random forests have yielded fairly high accuracy with very short execution times. Within edge processing, this fulfills the complex trade-off between accuracy and speed in predictive maintenance applications. The presented families of simple algorithms should be developed as a transparent source of opinion for industrial decision-making processes. Originality/value: What is new is the automation of maintenance activities by identifying the probable cause of failure using AI methods. The solution is aimed at company employees who diagnose the causes of failure, ultimately improving the accuracy and speed of diagnostics and service response.
Rocznik
Tom
Strony
543--556
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Faculty of Computer Science, Kazimierz Wielki University, Bydgoszcz
  • Faculty of Engineering Management, Poznan University of Technology in Poznan
  • Faculty of Engineering Management, WSB Merito Univeristy of Poznań
  • Faculty of Computer Science, Kazimierz Wielki University, Bydgoszcz
Bibliografia
  • 1. Abidi, M.H., Mohammed, M.K., Alkhalefah, H. (2022). Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing. Sustainability, 14, 3387.
  • 2. Alsina, E.F., Chica, M., Trawiński, K., Regattieri, A. (2018). On the use of machine learning methods to predict component reliability from data-driven industrial case studies. The International Journal of Advanced Manufacturing Technology, 94, 2419-2433.
  • 3. Alvarez Quiñones, L.I., Lozano-Moncada, C.A., Bravo Montenegro, D.A. (2023). Machine learning for predictive maintenance scheduling of distribution transformers. Journal of Quality in Maintenance Engineering, 29(1), 188-202.
  • 4. Amruthnath, N., Gupta, T. (2019). Factor analysis in fault diagnostics using random forest. arXiv preprint arXiv:1904.13366.
  • 5. Antosz, K., Jasiulewicz-Kaczmarek, M., Machado, J., Relich, M. (2023). Application of Principle Component Analysis and logistic regression to support Six Sigma implementation in maintenance. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 25(4).
  • 6. Arena, S., Florian, E., Zennaro, I., Orrù, P.F., Sgarbossa, F. (2022). A novel decision support system for managing predictive maintenance strategies based on machine learning approaches. Safety science, 146, 105529;
  • 7. Bousdekis, A., Lepenioti, K., Apostolou, D., Mentzas, G. (2021). A review of data-driven decision-making methods for industry 4.0 maintenance applications. Electronics, 10(7), 828.
  • 8. Bertolini, M., Mezzogori, D., Neroni, M., Zammori, F. (2021). Machine Learning for industrial applications: A comprehensive literature review. Expert Systems with Applications, 175, 114820
  • 9. Campbell, J.D., Reyes-Picknell, J.V., Kim, H.S. (2015). Uptime: Strategies for Excellence in Maintenance Management. CRC Press.
  • 10. Campos, J.R., Costa, E., Vieira, M. (2019). Improving failure prediction by ensembling the decisions of machine learning models: A case study. IEEE Access, 7, 177661-177674.
  • 11. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, R.D.P., Basto, J.P., Alcalá, S.G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.
  • 12. Chakroun, A., Hani, Y., Elmhamedi, A., Masmoudi, F. (2024). A predictive maintenance model for health assessment of an assembly robot based on machine learning in the context of smart plant. Journal of Intelligent Manufacturing, 1-19.
  • 13. Ciężak, W., Kutyłowska, M. (2023) Application of exponential smoothing method to forecasting daily water consumption in rural areas. Archives of Civil Engineering, 69(3), 445-456.
  • 14. Çınar, Z.M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211.
  • 15. Cline, B., Niculescu, R.S., Huffman, D., Deckel, B. (2017). Predictive maintenance applications for machine learning. Annual reliability and maintainability symposium (RAMS). IEEE, pp. 1-7.
  • 16. Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., Barbosa, J. (2020). Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in Industry, 123, 103298.
  • 17. Emmanouilidis, C. (2023). Topical collection "applications of machine learning in maintenance engineering and management". Neural Computing and Applications, 35(4), 2945-2946.
  • 18. EN 13306:2017; Maintenance. Maintenance Terminology.
  • 19. Gatta, F., Giampaolo, F., Chiaro, D., Piccialli, F. (2024). Predictive maintenance for offshore oil wells by means of deep learning features extraction. Expert Systems, 41(2), e13128
  • 20. Hallioui, A., Herrou, B., Katina, P.F., Santos, R.S., Egbue, O., Jasiulewicz-Kaczmarek, M., Marques, P.C. (2023). A Review of Sustainable Total Productive Maintenance (STPM). Sustainability, 15(16), 12362.
  • 21. Justus, V., Kanagachidambaresan, G.R. (2024). Machine learning based fault-oriented predictive maintenance in industry 4.0. International Journal of System Assurance Engineering and Management, 15(1), 462-474.
  • 22. Kaparthi, S., Bumblauskas, D. (2020). Designing predictive maintenance systems using decision tree-based machine learning techniques. International Journal of Quality & Reliability Management, 37(4), 659-686.
  • 23. Mahmud, I., Ismail, I., Abdulkarim, A., Shehu, G.S., Olarinoye, G.A., Musa, U. (2024). Selection of an appropriate maintenance strategy using analytical hierarchy process of cement plant. Life Cycle Reliability and Safety Engineering, 13(2), 103-109.
  • 24. Misaii, H., Fouladirad, M., Firoozeh, H. (2022). Data-driven Maintenance Optimization Using Random Forest Algorithm. ENBIS Spring Meeting.
  • 25. Musiał, M., Lichołai, L., Pękala, A. (2023) Analysis of the Thermal Performance of Isothermal Composite Heat Accumulators Containing Organic Phase-Change Material. Energies, 16, 1409.
  • 26. Nguyen, V.T., Do, P., Vosin, A., Iung, B. (2022). Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems. Reliability Engineering & System Safety, 228, 108757.
  • 27. Pinciroli, L., Baraldi, P., Zio, E. (2023). Maintenance optimization in Industry 4.0. Reliability Engineering & System Safety, 109204.
  • 28. Polenghi, A., Roda, I., Macchi, M., Pozzetti, A. (2023). A methodology to boost datadriven decision-making process for a modern maintenance practice. Production Planning & Control, 34(14), 1333-1349.
  • 29. Quatrini, E., Costantino, F., Di Gravio, G., Patriarca, R. (2020). Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities. Journal of Manufacturing Systems, 56, 117-132.
  • 30. Rebaiaia, M.L., Ait-Kadi, D. (2023). A new integrated strategy for optimising the maintenance cost of complex systems using reliability importance measures. International Journal of Production Research, 1-22.
  • 31. Rojek, I., Jasiulewicz-Kaczmarek, M., Piechowski, M., Mikołajewski, D. (2023). An artificial intelligence approach for improving maintenance to supervise machine failures and support their repair. Applied Sciences, 13(8), 4971.
  • 32. Ruiz-Sarmiento, J.R., Monroy, J., Moreno, F.A., Galindo, C., Bonelo, J.M., GonzalezJimenez, J. (2020). A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Engineering Applications of Artificial Intelligence, 87, 103289.
  • 33. Saihi, A., Ben-Daya, M., As'ad, R. (2023). Underpinning success factors of maintenance digital transformation: A hybrid reactive Delphi approach. International Journal of Production Economics, 255, 108701
  • 34. Sanchez-Londono, D., Barbieri, G., Fumagalli, L. (2023). Smart retrofitting in maintenance: a systematic literature review. Journal of Intelligent Manufacturing, 34(1), 1-19.
  • 35. Scaife, A.D. (2024) Improve predictive maintenance through the application of artificial intelligence: A systematic review. Results in Engineering, 21, 101645.
  • 36. Shaheen, B.W., Németh, I. (2022). Integration of maintenance management system functions with industry 4.0 technologies and features-A review. Processes, 10(11), 2173.
  • 37. Surucu, O., Gadsden, S.A., Yawney, J. (2023). Condition Monitoring using Machine Learning: A Review of Theory, Applications, and Recent Advances. Expert Systems with Applications, 221, 119738.
  • 38. Vanderschueren, T., Boute, R., Verdonck, T., Baesens, B., Verbeke, W. (2023). Optimizing the preventive maintenance frequency with causal machine learning. International Journal of Production Economics, 258, 108798
  • 39. Wang, X., Liu, M., Liu, C., Ling, L., Zhang, X. (2023). Data-driven and Knowledge-based predictive maintenance method for industrial robots for the production stability of intelligent manufacturing. Expert Systems with Applications, 234, 121136.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-203e711e-05d5-4349-a9bd-f3e3a3f61b18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.