Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this article is to study the method of approximation for zeros of the sum of a finite family of maximally monotone mappings and prove strong convergence of the proposed approximation method under suitable conditions. The method of proof is of independent interest. In addition, we give some applications to the minimization problems and provide a numerical example which supports our main result. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.
Wydawca
Czasopismo
Rocznik
Tom
Strony
152--166
Opis fizyczny
Bibliogr. 35 poz., tab.
Twórcy
autor
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Pvt. Bag 0016, Palapye, Botswana
autor
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Pvt. Bag 0016, Palapye, Botswana
autor
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Pvt. Bag 0016, Palapye, Botswana
Bibliografia
- [1] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106(2000), no. 2, 226-240.
- [2] Y. Yao, Y. J. Cho, and Y.-C. Liou,Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems, Eur. J. Oper. Res. 212(2011), no. 2, 242-250.
- [3] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16(1979), no.6, 964-979.
- [4] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul.4(2005), no. 4, 1168-1200.
- [5] H. Brezis and P.-L. Lions, Produits infinis de resolvantes, Israel J. Math. 29(1978), no. 4, 329-345.
- [6] P. Cholamjiak and Y. Shehu, Inertial forward-backward splitting method in Banach spaces with application to compressed sensing, Appl. Math. 64(2019), 409-435.
- [7] V. Dadashi and H. Khatibzadeh, On the weak and strong convergence of the proximal point algorithm in reflexive Banach spaces, Optimization 66(2017), no. 9, 1487-1494.
- [8] V. Dadashi and M. Postolache, Hybrid proximal point algorithm and applications to equilibrium problems and convex programming, J. Optim. Theory Appl. 174(2017), no. 2, 518-529.
- [9] K. Kunrada, N. Pholasa, and P. Cholamjiak, On convergence and complexity of the modified forward-backward method involving new line searches for convex minimization, Math. Meth. Appl. Sci. 42(2019), 1352-1362.
- [10] A. Moudafiand M. There, Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 94(1997), no. 2, 425-448.
- [11] G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl. 72(1979), no. 2, 383-390.
- [12] X. Qin, S. Y. Cho, and L. Wang, A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl. 2014(2014), 75, DOI: 10.1186/1687-1812-2014-75.
- [13] D. V. Thong and P. Cholamjiak, Strong convergence of a forward-backward splitting method with a new step size for solving monotone inclusions, Comp. Appl. Math. 38(2019), no. 94, DOI: 10.1007/s40314-019-0855-z.
- [14] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38(2000), 431-446.
- [15] G. B. Wega and H. Zegeye, A Method of approximation for a zero of the sum of maximally monotone mappings in Hilbert spaces, Arab J. Math. Sci. (2019), DOI: 10.1016/j.ajmsc.2019.05.004.
- [16] G. B. Wega, H. Zegeye, and O. A. Boikanyo, Approximating solutions of the sum of a finite family of maximally monotonne mappings in Hilbert spaces, Adv. Oper. Theory 5(2020), no. 2, 359-370, DOI: 10.1007/s43036-019-00026-9.
- [17] J. B. Baillon and G. Haddad, Quelques proprietes des operateurs angle-bornes et cycliquement monotones, Isr. J. Math. 26(1977), no. 2, 137-150.
- [18] P. L. Combettes, Iterative construction of the resolvent of a sum of maximal monotone operators, J. Convex Anal. 16(2009), no. 4, 727-748.
- [19] W. Takahashi, N.-C. Wong, and J.-C. Yao, Two generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applications, Taiwanese J. Math. 16(2012), no. 3, 1151-1172.
- [20] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38(1996), no. 3, 367-426.
- [21] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces, Math. Oper. Res. 26(2001), 248-264.
- [22] N. Pholasaa, P. Cholamjiaka, and Y-J Chob, Modified forward-backward splitting methods for accretive operators in Banach spaces, J. Nonlinear Sci. Appl. 9(2016), 2766-2778.
- [23] S. Reich, Constructive techniques for accretive and monotone operators, in: Applied Nonlinear Analysis, Academic Press, New York, 1979.
- [24] S. Suantai, P. Cholamjiak, and P. Sunthrayuth, Iterative methods with perturbations for the sum of two accretive operatorsin q-uniformly smooth Banach spaces, RACSAM 113(2019), no. 2, 203-223, DOI: 10.1007/s13398-017-0465-9.
- [25] R. I. Bot, E. R. Csetnek, and D. Meier, Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces, Optim. Methods Softw. 34(2019), no. 3, 489-514, DOI: 10.1080/10556788.2018.1457151.
- [26] W. Cholamjiak, P. Cholamjiak, and S. Suantai, An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl. 20(2018), no. 42, DOI: 10.1007/s11784-018-0526-5.
- [27] H. Wu, C. Cheng, and D. Qu, Strong convergence theorems for maximal monotone operators, fixed-point problems, and equilibrium problems, ISRN Applied Math. 2013(2013), 708548, DOI: 10.1155/2013/708548.
- [28] B. F. Svaiter, General projective splitting methods for sums of maximal monotone operators, SIAM J. Control Optim. 48(2009), no. 2, 787-811.
- [29] G. K. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
- [30] A. Moudafi, Viscosity approximations methods for fixed point problems, J. Math. Anal. Appl. 241(2000), 46-55.
- [31] H.-K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298(2004), no. 1, 279-291.
- [32] S.-S. Chang, On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216(1997), no. 1, 94-111.
- [33] M. G. Xu, Weak and strong convergence theorems for strict pseudo-contraction in Hilbert space, J. Math. Anl. Appl. 329(2017), 336-346.
- [34] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29(1962) no. 3, 341-346.
- [35] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pac. J. Math. 33(1970), 209-216
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-203a58e2-7179-4768-9c78-b7973f168ca6