Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
During the dewatering process, centrate is produced, which is returned to the beginning of the technological system. The quality of the resulting centrate, and therefore the size of the returned load of pollutants, affects the demand for electricity in the process of biological wastewater treatment. The following study presents the results of centrate quality tests at five wastewater treatment plants located in Poland. The dependence between suspended solids content and ammonia and COD concentrations in the centrate was determined. It was estimated that an increase in the overall suspended solids leads to an increase in COD by about 1.15 kgCOD/kgTSS. No correlation was found between TSS concentration and ammonia. It was calculated that the complete elimination of suspended solids from the sludge would reduce the electricity consumption for all five objects by about 535 MWh/y.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
50--55
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wz.
Twórcy
autor
- Poznan University of Technology, Department of Chemical Engineering and Equipment, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Department of Chemical Engineering and Equipment, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Department of Chemical Engineering and Equipment, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Department of Chemical Engineering and Equipment, 60-965 Poznan, Poland
Bibliografia
- 1. Siedlecka, E. & Siedlecki, J. (2021). Influence of valorization of sewage sludge on energy consumption in the drying process. Energies, 14, 4511. DOI: 10.3390/en14154511.
- 2. Chen, R., Yuan, S., Chen, S., Ci, H., Dai, X., Wang, X., Li, C., Wang, D. & Dong, B. (2022). Life-cycle assessment of two sewage sludge-to-energy systems based on different sewage sludge characteristics: energy balance and greenhouse gas-emission footprint analysis. J. Env. Sci., 111, 380–391. DOI: 10.1016/j.jes.2021.04.012.
- 3. Maktabifard, M., Zaborowska, E. & Makinia, J. (2018). Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Rev. Environ. Sci. Biotechnol. 17, 655–689. DOI: 10.1007/s11157-018-9478-x.
- 4. Battista, F., Strazzera, G., Valentino, F., Gottardo, M., Villano, M., Matos, M., Silva, F., M. Reis, Maria.A., Mata-Alvarez, J. & Astals, S. (2022). New insights in food waste, sewage sludge and green waste anaerobic fermentation for short-chain volatile fatty acids production: A review. J. Env. Chem. Eng., 10, 108319. DOI: 10.1016/j.jece.2022.108319.
- 5. Khanh Nguyen, V., Kumar Chaudhary, D., Hari Dahal, R., Hoang Trinh, N.; Kim, J., Chang, S.W., Hong, Y., Duc La, D., Nguyen, X.C. & Hao Ngo, H. (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105. DOI: 10.1016/j.fuel.2020.119105.
- 6. Volschan Junior, I., de Almeida, R., & Cammarota, M.C. A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants. J. Water. Proc. Eng. 40, 101857. DOI:10.1016/j.jwpe.2020.101857.
- 7. Masłoń, A., Czarnota, J., Szaja, A., Szulżyk-Cieplak, J. & Łagód, G. (2020). The enhancement of energy efficiency in a wastewater treatment plant through sustainable biogas use: case study from Poland. Energies, 13, 6056. DOI: 10.3390/en13226056.
- 8. Foladori, P., Vaccari, M. & Vitali, F. (2015). Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned. Water Sci.Tech., 72, 1007–1015. DOI: 10.2166/wst.2015.306.
- 9. Czerwionka, K., Wilinska, A. & Tuszynska, A. (2020). The use of organic coagulants in the primary precipitation process at wastewater treatment plants. Water, 12, 1650. DOI: 10.3390/w12061650.
- 10. Boncescu, C., Robescu, L.D., Bondrea, D.A. & Măcinic, M.E. (2021). Study of energy consumption in a wastewater treatment plant using logistic regression. IOP Conf. Ser.: Earth Environ. Sci. 664, 012054. DOI: 10.1088/1755-1315/664/1/012054.
- 11. Mininni, G., Laera, G., Bertanza, G., Canato, M. & Sbrilli, A. (2015). Mass and energy balances of sludge processing in reference and upgraded wastewater treatment plants. Environ. Sci. Pollut Res. 22, 7203–7215. DOI: 10.1007/s11356-014-4013-2.
- 12. Beckinghausen, A., Odlare, M., Thorin, E. & Schwede, S. (2020). From removal to recovery: an evaluation of nitrogen recovery techniques from wastewater. Applied Energy, 263, 114616. DOI: 10.1016/j.apenergy.2020.114616.
- 13. Ye, Y., Ngo, H.H., Guo, W., Liu, Y., Chang, S.W., Nguyen, D.D., Liang, H. & Wang, J. (2018). A critical review on ammonium re-covery from wastewater for sustainable wastewater management. Biores. Technol. 268, 749–758. DOI: 10.1016/j.biortech.2018.07.111.
- 14. Ahn, Y.-H. (2006). Sustainable nitrogen elimination biotechnologies: A review. Process Biochem. 1, 1709–1721. DOI: 10.1016/j.procbio.2006.03.033.
- 15. Han, X., Zhang, S., Yang, S., Zhang, L. & Peng, Y. (2020). Full-scale partial nitritation/anammox (pn/a) process for treating sludge dewatering liquor from anaerobic digestion after thermal hydrolysis. Biores. Technol., 297, 122380. DOI: 10.1016/j.biortech.2019.122380.
- 16. Zhang, Q., Vlaeminck, S.E., DeBarbadillo, C., Su, C., Al-Omari, A., Wett, B., Pümpel, T., Shaw, A., Chandran, K. & Murthy, S. (2018). Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox. Water Res. 143, 270–281. DOI: 10.1016/j.watres.2018.06.037.
- 17. Iddya, A., Hou, D., Khor, C.M., Ren, Z., Tester, J., Posmanik, R., Gross, A. & Jassby, D. (2020). Efficient ammonia recovery from wastewater using electrically conducting gas stripping membranes. Environ. Sci.: Nano, 7, 1759–1771. DOI: 10.1039/C9EN01303B.
- 18. Gonzalez-Salgado, I., Guigui, C. & Sperandio, M. (2022). Transmembrane chemical absorption technology for ammonia recovery from wastewater: A critical review. Chem. Eng. J. 444, 136491. DOI:10.1016/j.cej.2022.136491.
- 19. Simoni, G., Kirkebæk, B.S., Quist-Jensen, C.A., Christensen, M.L. & Ali, A. (2021). A comparison of vacuum and direct contact membrane distillation for phosphorus and ammonia recovery from wastewater. J. Water Proc. Eng. 44, 102350. DOI: 10.1016/j.jwpe.2021.102350.
- 20. Winkler, M.K. & Straka, L. (2019). New directions in biological nitrogen removal and recovery from wastewater. Current Opinion in Biotechnology, 57, 50–55. DOI:10.1016/j. copbio.2018.12.007.
- 21. Lee, Y.-J., Lin, B.-L., Xue, M. & Tsunemi, K. (2022). Ammonia/ammonium removal/recovery from wastewaters using bioelectro-chemical systems (BES): A review. Biores. Technol. 363, 127927. DOI: 10.1016/j.biortech.2022.127927.
- 22. Liu, Y., Ngo, H.H., Guo, W., Peng, L., Wang, D. & Ni, B. (2019). The roles of free ammonia (FA) in biological wastewater treatment processes: A review. Environment International, 123, 10–19. DOI: 10.1016/j.envint.2018.11.039.
- 23. Wang, Q. (2017). A roadmap for achieving energy-positive sewage treatment based on sludge treatment using free ammonia. ACS Sustainable Chem. Eng. 5, 9630–9633. DOI:10.1021/acssuschemeng.7b02605.
- 24. Lackner, S., Thoma, K., Gilbert, E.M., Gander, W., Schreff, D. & Horn, H. (2015). Start-up of a full-scale deammonification SBR-treating effluent from digested sludge dewatering. Water Sci. Tech., 71, 553–559. DOI: 10.2166/wst.2014.421.
- 25. Mulder, M.; Appeldoorn, K.; Weij, P. & van Kempen, R. (2018). Full scale optimisation of sludge dewatering and phosphate removal at harnaschpolder wwtp (the hague, nl). Water Practice Tech., 13, 21–29. DOI:10.2166/wpt.2018.008.
- 26. Chrispim, M.C., Scholz, M. & Nolasco, M.A. (2019). Phosphorus recovery from municipal wastewater treatment: critical review of challenges and opportunities for developing countries. J. Enviro. Manag. 248, 109268. DOI: 10.1016/j. jenvman.2019.109268.
- 27. Quist-Jensen, C.A., Sørensen, J.M., Svenstrup, A., Scarpa, L., Carlsen, T.S., Jensen, H.C., Wybrandt, L. & Christensen, M.L. (2018). Membrane crystallization for phosphorus recovery and ammonia stripping from reject water from sludge dewatering process. Desalination, 440, 156–160. DOI: 10.1016/j. desal.2017.11.034.
- 28. Cano, R. Pérez-Elvira, S.I. & Fdz-Polanco, F. (2015). Energy feasibility study of sludge pretreatments: A review. Appli. Energy, 149, 176–185. DOI: 10.1016/j.apenergy.2015.03.132.
- 29. Baust, H.K., Hammerich, S., König, H., Nirschl, H. & Gleiß, M. (2022). A resolved simulation approach to investigate the separation behavior in solid bowl centrifuges using material functions. Separations, 9, 248. DOI: 10.3390/separations9090248.
- 30. Jingsheng, C., Tao, Y. & Ongley, E. (2006). Influence of high levels of total suspended solids on measurement of cod and bod in the Yellow River, China. Environ, Monit, Assess. 116, 321–334. DOI: 10.1007/s10661-006-7374-2.
- 31. Wan, J. Gu, J. Zhao, Q. & Liu, Y. (2016). COD capture: a feasible option towards energy self-sufficient domestic waste-water treatment. Sci, Rep. 6, 25054. DOI: 10.1038/srep25054.
- 32. Zou, L., Li, H., Wang, S., Zheng, K., Wang, Y., Du, G. & Li, J. (2019). Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin. Front. Environ. Sci. Eng. 13, 83. DOI: 10.1007/s11783-019-1167-7.
- 33. Regulations of the Maritime Economy and Inland Navigation Minister. (2019). From 15th of July 2019 on Conditions to Be Met for Disposal of Treated Sewage into Water and Soil and Concerning Substances Harmful to the Environment (No. 1311).
- 34. Vaccari, M., Foladori, P., Nembrini, S. & Vitali, F. (2018). Benchmarking of energy consumption in municipal wastewater treatment plants – a survey of over 200 plants in Italy. Water Sci. Tech. 77, 2242–2252. DOI: 10.2166/wst.2018.035.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2039f052-ffc2-4726-b925-39ca8a6e0d52