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During the dewatering process, centrate is produced, which is returned to the beginning of the technological 
system. The quality of the resulting centrate, and therefore the size of the returned load of pollutants, affects the 
demand for electricity in the process of biological wastewater treatment. The following study presents the results 
of centrate quality tests at fi ve wastewater treatment plants located in Poland. The dependence between suspended 
solids content and ammonia and COD concentrations in the centrate was determined. It was estimated that an 
increase in the overall suspended solids leads to an increase in COD by about 1.15 kgCOD/kgTSS. No correlation 
was found between TSS concentration and ammonia. It was calculated that the complete elimination of suspended 
solids from the sludge would reduce the electricity consumption for all fi ve objects by about 535 MWh/y.
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INTRODUCTION

       Sludge dewatering is an essential part of the wastewater 
treatment process, as it reduces the volume of sludge that 
must be disposed of or treated further. Sludge treatment 
and management are one of the main operating costs. 
The process of dewatering produces effl uent, which can 
contain a signifi cant load of pollutants. The effi ciency 
of this process has a direct impact on the electricity 
consumption of the downstream biological wastewater 
treatment process, processing of dewatered sludge1, and 
also affects greenhouse gas emissions in the fi nal treat-
ment processes2. In order to achieve full carbon neutra-
lity and energy selfsuffi ciency of wastewater treatment 
plants, modernization and optimization of the applied 
technologies are necessary3. The current economic and 
environmental situation provides additional motivation 
to search for new technological solutions aimed at re-
ducing energy indicators of the process. One popular 
direction of development is increasing the production 
of own energy using, for example, cofermentation4, 
conditioning raw sludge before fermentation5, building 
wind farms, solar power plants, and heat pumps6. The 
energy indicators can also be improved by reducing 
energy consumption at individual stages of the treatment 
process. About 74% of the electrical energy is used for 
biological treatment, about 8% for sludge processing, 
pumping sewage consumes 7%, and the rest of the 
electrical energy is wasted for other purposes7. It should 
be noted that in the case of small wastewater treatment 
plants, the share of energy consumption of each process 
may be signifi cantly different8. Individual shares may also 
vary due to the characteristics of the sewage network 
and the quality of the incoming wastewater. The use of 
some technological solutions may also cause changes in 
electricity consumption, e.g. preprecipitation9. The area 
with signifi cant potential for reducing electrical energy 
consumption is the process of sludge dewatering. There 
have been a number of studies that have investigated the 
relationship between quality of effl uent and electricity 
consumption in wastewater treatment plants. A study 
by Boncescu et. al. found that the concentration of 
pollutants among others total suspended solids (TSS) 
in the sewage was a signifi cant predictor of electricity 

consumption in the downstream biological treatment 
process10. Research by Mininni et. al. on WWTP with the 
designed capacity 500 000 p.e. (population equivalent) 
showed that the stream of recycled COD load in the 
effl uents from the dewatering process is less than 2% of 
the incoming load11. It should be emphasized that the size 
of the recycled load of pollutants, as well as the energy 
consumption of the processes, may vary signifi cantly in 
individual treatment plants. Currently, many technologies 
are being developed to pretreat effl uent and reduce the 
returned load of contaminants to the beginning of the 
technological system. Much attention is paid to reducing 
the load and recovery of nitrogen compounds12, especially 
in the form of ammonia13. The concentration of nitro-
gen depends on the sludge treatment technology used. 
Effl uent from dewatering of digested sludge may contain 
up to 1500 mg/L of ammonia and constitute 25% of the 
total nitrogen load14. The hydrolysis of sludge before 
fermentation process may increase the concentration 
of ammonia in the discharge by two times15, 16. Iddya 
et. al. developed a method for removing nitrogen using 
electrically conducting gas stripping membranes17 which 
has a lower energy consumption indicator per unit of 
nitrogen compared to traditional biological methods. 
Membrane methods are also being developed, including 
transmembrane chemical absorption18 and membrane 
distillation19. Attempts are also being made to modify 
traditional biological treatment methods20 and use bio-
electrochemical systems21. Some researchers see great 
potential in the high concentration of free ammonia 
in the effl uents. Research is being conducted on the 
use of ammonia from dewatering effl uents to increase 
biogas production from primary and excess sludge up 
to 30%22, 23. Lackner et. al. presented the technology of 
centrate treatment in the sequencing batch reactor (SBR) 
from the dewatering of the wastewater treatment plant 
in Ingolstand Germany with a size of 275 000 p.e. The 
proposed technology allowed to achieve a 52% lower 
specifi c energy consumption compared to the classical 
method24. The effl uents are also rich in phosphorus com-
pounds25. Phosphorus may be recovered from the stream 
by precipitation as struvite (magnesium ammonium 
phosphate) and next may be used as a fertilizer. At the 
moment, high-effi ciency recovery technologies have been 
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developed26. Some of them allow the recovery of more 
than 90% of phosphorus. According to many authors, 
total suspension is a factor that reduces the effi ciency 
of recovery. Quist-Jensen et. al. developed a membrane 
crystallization method that allows for the simultaneous 
recovery of phosphorus and ammonia27. In this case, the 
degree of phosphorus recovery was 60%. Many of the 
new technologies successfully developed on a laboratory 
scale are not suitable for full-scale implementation due 
to high investment costs or a negative energy balance28. 
The concentration of contaminants in the effl uent is 
infl uenced by, among other things, the effi ciency of the 
dewatering device29. Low effi ciency of solid particle se-
paration leads to the passage of signifi cant amounts of 
suspended solids to the effl uent, which is the main carrier 
of COD30. Wan. et. al. indicates that high effi ciency of 
capturing COD is an important parameter affecting the 
energy selfsuffi ciency of the sewage treatment plant31. It 
has been shown that electricity consumption at sewage 
treatment plants is positively correlated with the incoming 
COD load32. The effi ciency of capturing total suspended 
matter is described by the equation:

 (1)

where:
Lout – suspended solids load in the effl uent (mg/L),
Lin – load of suspended solids in the infl uent (mg/L).
Recent studies have shown that the quality of the 

effl uent from sludge dewatering can affect electricity 
consumption in several ways. Obtaining a better quality 
effl uent requires the use of more electricity or a higher 
dose of chemicals. On the other hand, the better quality 
of the effl uent reduces energy consumption in the bio-
logical treatment plant. Electricity consumption depends 
on the type of dewatering device used. Currently, there 
are many devices for dewatering sewage sludge available 
on the market. Examples of such devices are belt fi lter 
press, chamber-membrane fi lter press, disc press, and 
screw press decanter centrifuge. The optimal dose of 
fl occulant, as well as the degree of dewatered, will be 
different for each type of device due to, for example, the 
presence of shear forces, and the difference in pressure 
exerted on the sludge. The researchers found that the 
energy consumption of the plant was lower when the 
sludge was dewatered using a centrifuge, compared to 
other dewatering methods such as belt fi lter presses32, 33. 
They also found that the energy consumption increased 
with the total solids content of the sludge, indicating 
that higher quality effl uent can lead to lower energy 
costs. Overall, these studies suggest that the quality of 
the effl uent produced during sludge dewatering can have 
a signifi cant impact on the electricity consumption of 
a wastewater treatment plant. Proper management of 
sludge dewatering can help to minimize energy costs and 
improve the overall effi ciency of the treatment process. 

There is a lack of literature data on the effectiveness 
of solid particle separation on the volume of returned 
contamination load, which became the basis for extensive 
research, the results of which are presented in this article. 
In this study, we aim to further investigate the relationship 
between effl uent quality and electricity consumption in 
wastewater treatment plants. By understanding the factors 

that infl uence electricity consumption in this context, it 
may be possible to identify opportunities for improving 
energy effi ciency and reducing the environmental impact 
of wastewater treatment. The aim of the research was to 
determine the correlation between the effectiveness of 
suspended solids separation and the contamination load 
in the effl uent. The obtained data allowed the authors 
to estimate the potential energy savings resulting from 
improving the degree of separation.

MATERIALS AND METHODS 

Wastewater treatment plants (WWTP) are facilities 
that are designed to treat and purify wastewater before 
it is released back into the environment. These plants 
play a vital role in protecting public health and the 
environment by removing contaminants and pollutants 
from sewage and other types of wastewater. There are 
various types of WWTPs, ranging from small, decentra-
lized systems that serve a single building or community, 
to large, centralized plants that serve entire cities or 
regions. Regardless of size or type, all WWTPs follow 
a similar treatment process, which typically involves the 
following steps: collection, treatment, and discharge. 
During the collection phase, wastewater is transported to 
the WWTP through a network of pipes or channels. The 
treatment phase involves a series of physical, chemical, 
and biological processes that are used to remove conta-
minants and pollutants from the wastewater. Finally, in 
the discharge phase, the treated wastewater is released 
back into the environment, either through a natural body 
of water or through an irrigation system. The research 
was conducted at fi ve municipal wastewater treatment 
plants located in Greater Poland province in Poland. 
Objects 1 and 2 are large wastewater treatment plants 
with the process of mesophilic fermentation of sludge 
and pe. > 100 000. The pe. of rest WWTPs (3 – 5) are 
less than 60 000. The characterization of the treatment 
process at the studied facilities is described in the next 
chapters below.

Characteristics of the WWTP 1 – 2
In the fi rst stage, the sewage is fi ltered through bar 

screen (1), and then dewatered in a sand trap (2). In 
the primary settiling tank (3), organic sludge is separated 
and sent to the gravitational thickener (6). The treated 
sewage is then directed to the biological reactor (4), and 
then to the secondary settiling tank (5). Excess sludge 
is thickened in the mechanical thickener (8) and mixed 
with the preliminary sludge before being sent to the 
mesophilic fermentation chamber (9). The fermented 
sludge is dewatered in the decantation centrifuge (10). 
The sludge dewatering process is assisted by fl occulant. 
Effl uent from dewatering and thickening processes is 
returned to the beginning of the technological system. 
Figure 1 shows a simplifi ed diagram of objects 1 – 2.

Characteristics of the WWTP 3 – 5
In the fi rst stage, the wastewater is screened on bar 

screen (1), and then the mineral suspended solids are 
removed in the sand trap (2). The clarifi ed wastewater 
is then sent to the biological reactor (4) and then to the 
secondary sedimentation tank (5). Excess sludge is thic-
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kened in the gravity thickener (6). The thickened sludge 
is then dewatered on the decantation centrifuge (10). 
The sludge dewatering process is aided by a fl occulant. 
Effl uent from the dewatering and thickening processes 
is returned to the beginning of the technological system. 
The wastewater clarifi ed in the secondary sedimentation 
tank is sent to the receiving body. Figure 2 shows a sim-
plifi ed scheme of objects 3 – 5.

Samples and Analyses
Samples of effl uent were taken directly from the outfl ow 

of the dewatering device (I). Samples of raw wastewa-
ter were taken for WWTP 1 – 2 before the primary 
sedimentation tanks (II) and for WWTP 3 – 5 before 
the biological reactors (III). Wastewater parameters 
(BOD5, COD, TN, TP) were determined in accordance 
with the procedures set out in the Regulations of the 
Maritime Economy and Inland Navigation Minister17 
i.e. chemical oxygen demand - PN-ISO 6060:2006; 
total suspended solids - PN-EN 872:2007+Ap1:2007; 
ammonia PN-EN ISO 14911:2002; total phosphorous - 
PN-EN ISO 6878:2006+Ap1+Ap2/2010; pH - PN-EN 
ISO 10523:2012; alkalinity - PN-EN ISO 9963-1:2001/
Ap1:2004. At the same time, the infl ow to the facilities 
and the hydraulic load on the dewatering equipment was 
also recorded. The intensity of effl uent was calculated 
based on a mass balance. 

Figure 3 below shows pictures of effl uent samples 
with different total suspended solids concentrations. The 
samples come from the process of dewatering digested 

Figure 1. Scheme of WWTP 1 – 2; 1. Bar screen; 2. Girt chamber; 3. Primary Settling Tank; 4. Bioreactor; 5. Secondary Settling 
Tank; 6. Gravity Thickener; 7. Holding Tank; 8. Belt Thickener; 9. Digester; 10. Decanter centrifuge; F. Flocculant; (I) & 
(II) samplings point

Figure 2. Scheme of WWTP 3 – 5; 1. Bar screen; 2. Girt chamber; 4. Bioreactor; 5. Secondary Settling Tank; 6. Gravity Thickener; 
10. Decanter centrifuge; F. Flocculant; (I) & (III) samplings point

Figure 3. Photos of effl uent samples with different concentra-
tions of total suspended solids: A – 100 mg/L; B – 500 
mg/L; C – 800 mg/L; D – 1400 mg/L; E – 3100 mg/L

sludge from WWTP 1. The lower the total suspension 
content, the more yellow the colour of the sample. 
Increasing the concentration of the suspension darkens 
the sample.

RESULTS

The results of effl uent quality for each wastewater 
treatment plant are presented in Table 1. Effl uents 
from mesophilic digestion sludge (MD) dewatering had 
signifi cantly higher concentrations of ammonia compared 
to effl uents from waste activated sludge (WAS). Higher 
pH and alkalinity values were also observed for MD 
than WAS. The best quality of centrate was obtained 
at WWTP 4. The lowest values of each of the tested 
pollutants were recorded.

There was a demonstrated increase in COD from 1.0 
to 1.3 mg/L in relation to the increase in total suspended 
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solids, regardless of the type of sludge being dewate-
red. No signifi cant correlation was observed between 
the concentration of TSS and the concentration of 
ammonia in the effl uent. The relationship between the 
concentration of ammonia and COD and TSS is shown 
in Figures 4 and 5.

The values of the directional coeffi cients, free terms, 
and R2 for individual objects are listed in Table 2. Simi-
lar values of directional coeffi cients were obtained for 
COD. For wastewater treatment plants 1 – 2, the value 
of the constant b is very similar. This may be due to 
the fermentation process and the long retention time in 

Figure 4. COD dependence on the total suspended solids concentration in the centrate

Table 1. Characteristics of the centrate

Figure 5. Ammonia dependence on the total suspended solids concentration in the centrate
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MWh per year. These energy savings justify efforts to 
optimize the dewatering process, as it can be a simple 
and cost-effective way to improve the energy effi ciency 
of wastewater treatment plants. The presented method 
can be used to assess potential savings at other waste-
water treatment plants, and can help in the appropriate 
selection of the drainage device.

There are several directions that future research could 
take to further explore this issue. One possibility is to 
investigate the potential for using alternative energy 
sources, such as solar or wind power, to meet the energy 
needs of wastewater treatment plants. Another approach 
could be to develop new technologies or processes that 
are more energy effi cient, such as advanced fi ltration 
systems or innovative methods for sludge dewatering. 
Overall, the importance of this research lies in the 
potential for improving the sustainability of wastewater 
treatment processes. By reducing the energy consump-
tion of these facilities, we can not only save money and 
reduce greenhouse gas emissions, but we can also help 
to ensure that these essential services can be provided 
in a more environmentally responsible manner.
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