PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soft-sediment deformation structures in siliciclastic sediments: an overview

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deformations formed in unconsolidated sediments are known as soft-sediment deformation structures. Their nature, the time of their genesis, and the state in which the sediments occured during the formation of soft-sediment deformation structures are responsible for controversies regarding the character of these deformations. A definition for soft sediment deformation structures in siliciclastic sediments is therefore proposed. A wide variety of soft-sediment deformations in sediments, with emphasis on deformations in siliciclastic sediments studied by the present author, are described. Their genesis can be understood only if their sedimentary context is considered, so that attention is also paid to the various deformational processes, which are subdivided here into (1) endogenic processes resulting in endoturbations; (2) gravity-dominated processes resulting in graviturbations, which can be subdivided further into (2a) astroturbations, (2b) praecipiturbations, (2c) instabiloturbations, (2d) compagoturbations and (2e) inclinaturbations; and (3) exogenic processes resulting in exoturbations, which can be further subdivided into (3a) bioturbations - with subcategories (3a’) phytoturbations, (3a’’) zooturbations and (3a’’’) anthropoturbations - (3b) glaciturbations, (3c) thermoturbations, (3d) hydroturbations, (3e) chemoturbations, and (3f) eoloturbations. This subdivision forms the basis for a new approach towards their classification. It is found that detailed analysis of soft-sediment deformations can increase the insight into aspects that are of importance for applied earth-scientific research, and that many more underlying data of purely scientific interest can, in specific cases, be derived from them than previously assumed. A first assessment of aspects that make soft-sediment deformation structures in clastic sediments relevant for the earth sciences, is therefore provided.
Czasopismo
Rocznik
Strony
3--55
Opis fizyczny
Bibliogr. 415 poz.
Twórcy
autor
  • Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań, Poland
Bibliografia
  • Aalto, K.R. & Miller III, W., 1999. Sedimentology of the Pliocene Upper Onzole Formation, an inner-trench slope succession in northwestern Equador. Journal of South American Earth Sciences 12, 69-85.
  • Aber, J.S., 1992. Glaciotectonic structures and landforms. Encyclopedia of Earth System Science, Vol. 2. Academic Press, San Diego, 361-378.
  • Aber, J.S. & Ber, A. 2007. Glaciotectonism. Developments in Quaternary Science, Vol. 6. Elsevier, Amsterdam, 246 pp.
  • Aber, J.S., Croot, D.G. & Fenton, M.M. 1989. Glaciotectonic landforms and structures. Glaciology and Quaternary Geology Series. Kluwer Academic Publishers, Dordrecht, 200 pp.
  • Allen, J.R.L., 1982. Sedimentary structures, their character and physical basis, Vol. 2. Developments in Sedimentology, Vol. 30B. Elsevier, Amsterdam, 663 pp.
  • Allen, J.R.L., 1984. Wrinkle marks: an intertidal sedimentary structure due to aseismic soft-sediment loading. Sedimentary Geology 41, 75-95.
  • Allen, J.R.L., 1986a. On the curl of desiccation polygons. Sedimentary Geology 46, 23-31.
  • Allen, J.R.L., 1986b. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sedimentary Geology 46, 67-75.
  • Allen, J.R.L. & Banks, N.L., 1972. An interpretation and analysis of recumbent-folded deformed crossbedding. Sedimentology 19, 257-283.
  • Allen, Ph. A., Leather, J. & Brasier, M.D., 2004. The Neoproterozoic Fiq glaciation and its aftermath, Huqfsupergroup of Oman. Basin Research 16, 507-534.
  • Alonso-Zarza, A.M., Genise, J.F., Cabrera, M.C., Mangas, J., Martín-Pérez, A., Valdeolmillo, A. & Dorado-Valiño, M., 2008. Megarhizoliths in Pleistocene Aeolian deposits from Gran Canaria (Spain): ichnological and palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 39-51.
  • Anand, A. & Jain, A.K., 1987. Earthquakes and deformational structures (seismites) in Holocene sediments from the Himalayan-Andaman Arc, India. Tectonophysics 133, 105-120.
  • Andersen, L.T., Hansen, D.L., Huuse, M., 2005. Numerical modelling of thrust structures in unconsolidated sediments: implications for glaciotectonic deformation. Journal of Structural Geology 27, 587-596.
  • Anketell, J.M. & Dżułyński, S., 1969. Patterns of density controlled convolutions involving statistically homogeneous and heterogeneous layers. Rocznik Polskiego Towarzystwa Geologicznego 38, 401-409.
  • Anketell, J.M., Cegła, J. & Dżułyński, S., 1970. On the deformational structures in systems with reversed density gradients. Rocznik Polskiego Towarzystwa Geologicznego 40, 3-30.
  • Aboumaria, K., Zaghloul, M.N., Battaglia, M., Loiacono, F., Puglisi, D. & Aberkan, M., 2009. Sedimentary processes and provenance of Quaternary marine formations from the Tangier Peninsula (Northern Rif, Morocco). Journal of African Earth Sciences (in press).
  • Antoine, P., Marchiol, A., Brocandel, M., Gros, Y., 2005. Découverte de structures périglaciaires (sand-wedges et composite-wedges) sur le site de stockage de déchets radioactifs de l’Aube (France). Comptes Rendus Geosciences 337, 1462-1473.
  • Arnaud, E., 2008. Deformation in the Neoproterozoic Smalfjord Formation, northern Norway: an indicator of glacial depositional conditions? Sedimentology 55, 335-356.
  • Arnaud, E. & Eyles, C.H., 2004. Glacial influence on Neoproterozoic sedimentation: the Smalfjord Formation, northern Norway - reply. Sedimentology 51,1423-1430.
  • Arnaud, E. & Eyles, C.H., 2006. Neoproterozoic environmental change recorded in the Port Askaig Formation, Scotland: Climatic vs tectonic controls. Sedimentary Geology 183, 99-124.
  • Aslan, A., Warne, A.G., White, W.A., Guevara, E.H., Smyth, R.C., Raney, J.A. & Gibeaut, J.C., 2001. Mud volcanoes of the Orinoco Delta, Eastern Venezuela. Geomorphology 41, 323-336.
  • Bachmann, G.H. & Aref, A.M., 2005. A seismite in Triassic gypsum deposits (Grabfeld Formation, Ladinian), southwestern Germany. Sedimentary Geology 180, 75-89.
  • Banham, P.H., 1975. Glacitectonic structures: a general discussion with particular reference to the contorted drift of Norfolk. [In:] A.E. Wright & F. Moseley (Eds), Ice ages: ancient and modern. Geological Journal 6, 69-94.
  • Benedict, J.B., 1976. Frost creep and gelifluction features: A review. Quaternary Research 6 55-76.
  • Benn, D.I. & Evans, D.J.A., 1996. The interpretation and classification of subglacially-deformed materials. Quaternary Science Reviews 15, 23-52.
  • Benn, D.I. & Clappertron, C.M., 2000. Pleistocene glacitectonic landforms and sediments around central Magellan Strait, southernmost Chile: evidence for fast outlet glaciers with cold-based margins. Quaternary Science Reviews 19, 591-612.
  • Benn, D.I., Prave, R., 2006. Subglacial and proglacial glacitectonic deformation in the Neoproterozoic Port Askaig Formation, Scotland. Geomorphology 75, 266-280.
  • Benner, J.S., Ridge, J.C. & Knecht, R.J., 2009. Timing of postglacial reinhabitation and ecological development of two New England, USA, drainages based on trace fossil evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 272, 212-231.
  • Bennett, M.R., 2001. The morphology, structural evolution and significance of push moraines. Earth-Science Reviews 19, 591-612.
  • Bennett, M.R., Huddart, D. & McCormick, T., 2000. The glaciolacustrine landform-sediment assemblage at Heinabergsjöumlökull, Iceland. Geografiska Annaler, Series A: Physical Geography 82, 1-16.
  • Berthelsen, A., 1979. Recumbent folds and boudinage structures formed by subglacial shear: an example of gravity tectonics. [In:] Van der Linden, W.J.M. (Ed.), Van Bemmelen and his search for harmony. Geologie en Mijnbouw 58, 252-260.
  • Bhattacharya, B., Bhattacharya , H.N., 2007. Implications of trace fossil assemblages from Late Paleozoic Glaciomarine Talchir Formation, Raniganj Basin, India. Gondwana Research 12, 509-524.
  • Billings, M.P., 1972. Structural geology (3rd ed.). Prentice Hall, Englewood Cliffs, N.J., 606 pp. Bishop, J.W. & Sumner, D.Y., 2006. Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South Africa. I: Constraints on microcrystalline CaCO3 precipitation. Sedimentology 53, 1049-1068.
  • Bishop, J.W., Sumner, D.Y. & Huerta, N.J., 2006. Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South Africa. II: A wave-induced fluid flow model. Sedimentology 53, 1069-1082.
  • Black, R.F., 1952. Growth of the ice-wedge polygons in permafrost near Barrow, Alaska. Geological Society of America Bulletin 63, 1235-1236.
  • Boswell, P.G.H., 1949. A preliminary examination of the thixotropy of some sedimentary rocks. Quarterly Journal, Geological Society, London 104, 499-526.
  • Bouchette, F., Seguret, M. & Moussine-Pouchkine, A., 2001. Coarse carbonate breccias as a result of waterwave cyclic loading (uppermost Jurassic - South-East Basin, France). Sedimentology 48, 767-789.
  • Boulton, G.S., Van der Meer, J.M., Beets, D.J., Hart, J.K. & Ruegg, G.H.J., 1999. The sedimentary and structural evolution of a recent push moraine complex: Holmstrømbreen, Spitsbergen. Quaternary Science Reviews 18, 339-371.
  • Boulton, G.S., Dobbie, K.E. & Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International 86, 3-28.
  • Bouma, A.H., 1962. Sedimentology of some flysch deposits - a graphic approach to facies interpretation. Elsevier, Amsterdam, 168 pp.
  • Bowman, D., Korjenkov, A. & Porat, N., 2004. Late-Pleistocene seismites from Lake Issyk-Kul, the Tien Shan range, Kyrghyzstan. Sedimentary Geology 163, 211-228.
  • Brenchley, P.J. & Newall, G., 1977. The significance of contorted bedding in upper Ordovician sediments of the Oslo region, Norway. Journal of Sedimentary Petrology 44, 819-833.
  • Brodzikowski, K., 1981. Dilatancy and the course of the deformational process in unconsolidated sediments. Rocznik Polskiego Towarzystwa Geologicznego 51, 83-95.
  • Brodzikowski, K., 1982. Deformacje osadów nieskonsolidowanych w obszarach niżowych zlodowaceń plejstocenskich na przykładzie Polski SW [Deformations of unconsolidated sediments in areas glaciated during the Pleistocene with Southwest Poland as an example]. Acta Universitatis Wratislaviensis 574, 87 pp.
  • Brodzikowski, K. & Cegła, J., 1981. Kink folding in unconsolidated Quaternary sediments. Rocznik Polskiego Towarzystwa Geologicznego 51, 63-82.
  • Brodzikowski, K. & Van Loon, A.J., 1979. Comparison of metasedimentary structures and their genesis in some Holocene lagoonal sediments of the Netherlands and Pleistocene (Mindel) glacio-fluvial sediments of Poland. Bulletin de l’Académie Polonaise des Sciences, Série Science de la Terre 27, 95-105.
  • Brodzikowski, K. & Van Loon, A.J., 1980. Sedimentary deformations in Saalian glaciolimnic deposits near Wlostów (Zary area, western Poland). Geologie en Mijnbouw 59, 251-272.
  • Brodzikowski, K. & Van Loon, A.J., 1981. Toward a systematic terminology of glacitectonic phenomena. Bulletin de l’Académie Polonaise des Sciences, Série Science de la Terre 29, 219-231.
  • Brodzikowski, K. & Van Loon, A.J. 1983. Sedimentology and deformational history of unconsolidated Quaternary sediments of the Jaroszów Zone (Sudetic Foreland). Geologia Sudetica 18, 121-196.
  • Brodzikowski, K. & Van Loon, A.J., 1985a. Inventory of deformational structures as a tool for unravelling the Quaternary geology of glaciated areas. Boreas 14,175-188
  • Brodzikowski, K. & Van Loon, A.J., 1985b. Penecontemporaneous non-tectonic brecciation of unconsolidated silts and muds. [In:] R. Hesse (Ed.), Sedimentology of siltstone and mudstone. Sedimentary Geology 41, 269-282.
  • Brodzikowski, K. & A.J. van Loon, 1987. A systematic classification of glacial and periglacial environments, facies and deposits. Earth-Science Reviews 24, 297-381.
  • Brodzikowski, K. & Van Loon, A.J., 1990. Geological analysis of the overburden as a tool for safe and effective exploitation of the Bełchatów opencast browncoal mine (central Poland). Mining Science and Technology 11, 225-243.
  • Brodzikowski, K. & Van Loon, 1991. Glacigenic sediments. Developments in Sedimentology, Vol. 49. Elsevier, Amsterdam, 674 pp.
  • Brodzikowski, K., Burdukiewicz, J.M. & Van Loon, A.J., 1984. Deformational processes and environment of Late Vistulian fluvial sedimentation in Kopanica Valley (Late Palaeolithic settlement area). [In:] J.K. Kozlowski & S.K. Kozlowski (Eds), Advances in Palaeolithic and Mesolithic Archaeology. Archaeologia Interregionalis 5, 79-94
  • Brodzikowski, K., Gotowała, R., Kasza, L. & Van Loon, A.J., 1987a. The Kleszczów Graben (central Poland): reconstruction of the deformational history and inventory of the resulting soft-sediment deformational structures. [In:] M.E. Jones & R.M.F. Preston (Eds), Deformation of sediments and sedimentary rocks. Geological Society Special Publication, Vol. 29, 241-254.
  • Brodzikowski, K., Gotowała, R., Hałuszczak, A., Krzyszkowski, D. & Van Loon, A.J., 1987b. Softsediment deformations from glaciodeltaic, glaciolacustrine and fluviolacustrine sediments in the Kleszczów Graben (central Poland). [In:] M.E. Jones & R.M.F. Preston (Eds), Deformation of sediments and sedimentary rocks. Geological Society Special Publication, Vol. 29, 255-267.
  • Brodzikowski, K., Krzyszkowski, D. & Van Loon, A.J., 1987c. Endogenic processes as a cause of penecontemporaneous soft-sediment deformations in the fluviolacustrine Czy ów Series (Kleszczów Graben, central Poland). [In:] M.E. Jones & R.M.F. Preston (Eds), Deformation of sediments and sedimentary rocks. Geological Society Special Publication, Vol. 29, 269-278.
  • Brodzikowski, K., Hałuszczak, A., Krzyszkowski, D. & Van Loon, A.J., 1987d. Genesis and diagnostic value of large-scale gravity-induced penecontemporaneous deformation horizons in Quaternary sediments of the Kleszczów Graben (central Poland). [In:] M.E. Jones & R.M.F. Preston (Eds), Deformation of sediments and sedimentary rocks. Geological Society Special Publication, Vol. 29, 287-298.
  • Brodzikowski, K., Van Loon, A.J. & Zieliński, T., 1997. Development of a lake in a subsiding basin in front of a Saalian ice sheet (Klesczów Graben, central Poland). Sedimentary Geology 113, 55-80.
  • Bromley, R., 1990. Trace fossils: biology and taphonomy. Allen & Unwin Australia, 280 pp.
  • Bromley, R.G. & Pedersen, G.K., 2008. Ophiomorpha irregulaire, Mesozoic trace fossil that is either well understood but rare in outcrop or poorly understood but common in core. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 295-298.
  • Broster, B.E. & Hicock, S.R., 1985. Multiple flow and support mechanisms and the development of inverse grading in a subaquatic glacigenic debris flow. Sedimentology 32, 645-657.
  • Brown, R.J., Kokelaar, B.P. & Branney, M.J., 2007. Widespread transport of pyroclastic density currents from a large silicic tuff ring: the Glaramara tuff, Scafell caldera, English Lake District, UK. Sedimentology 54, 1163-1190.
  • Bryan, S.E., Holcombe, R.J. & Fielding, C.R., 2001. Yarrol terrane of the northern New England Fold Belt: forearc or backarc? Australian Journal of Earth Sciences 48, 293-316.
  • Bryan, S.E., Fielding, C.R., Holcombe, R.J., Cook, A. & Moffitt, C.A., 2003. Stratigraphy, facies architecture and tectonic implications of the Upper Devonian to Lower Carboniferous Campwyn Volcanics of the northern New England Fold Belt. Australian Journal of Earth Sciences 50, 377-401.
  • Butler, R.W.H. & Tavarnelli, E., 2006. The structure and kinematics of substrate entrainment into highconcentration sandy turbidites: a field example from the Gorgoglione ‘flysch’ of southern Italy. Sedimentology 53, 655-670.
  • Butrym, J., Cegła, J., Dżułyński, S. & Nakonieczny, S., 1964. New interpretation of periglacial structures. Folia Quaternaria 17, 1-34.
  • Campbell, K.A., Nesbitt, E.A. & Bourgeois, J., 2006. Signatures of storms, oceanic floods and forearc tectonism in marine shelf strata of the Quinault Formation (Pliocene), Washington, USA. Sedimentology 53, 945-969.
  • Cantalamessa, G. & Di Celma, C., 2005. Sedimentary features of tsunami backwash deposits in a shallow marine Miocene setting, Mejillones Peninsula, northern Chile. Sedimentary Geology 178, 259-273.
  • Carmona, N.B., Buatois, L.A., Ponce, J.J. & Mángano, M.G., 2009. Ichnology and sedimentology of a tideinfluenced delta, Lower Miocene Chenque Formation, Patagonia, Argentina: trace-fossil distribution and response to environmental stress. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 75-86.
  • Carter, R.M. & Norris, R.J., 1986. Redeposited conglomerates in a Miocene flysch sequence at Blackmount, Western Southland, New Zealand. Sedimentary Geology 18, 289-319.
  • Cavazza, W., DeCelles, P.G., Fellin, M.G. & Paganelli, L., 2007. The Miocene Saint-Florent Basin in northern Corsica: stratigraphy, sedimentology, and tectonic implications. Basin Research 19, 507-527.
  • Chen, D., Tucker, M.E., Zhu, J. & Jiang, M., 2002. Carbonate platform evolution: from a bioconstructed platform margin to a sand-shoal system (Devonian, Guilin, South China). Sedimentology 49, 737-764.
  • Chilingarian, G.V. & Wolf, K.H., 1992. Introduction: from marine interstitial fluids to paleosols - a review. [In:] G.V. Chilingarian & K.H. Wolf (Eds), Diagenesis, III. Developments in Sedimentology, Vol. 47. Elsevier, Amsterdam, 1-12.
  • Chunga, K., Livio, F., Michetti, A.M. & Serva, L., 2007. Synsedimentary deformation of Pleistocene glaciolacustrine deposits in the Albese con Cassano Area (Southern Alps, Northern Italy), and possible implications for paleoseismicity. Sedimentary Geology 196, 59-80.
  • Cita, M.B., 2008. Deep-sea homogenites: sedimentary expression of a prehistoric megatsunami in the eastern Mediterranean. [In:] Shiki, T., Minora, K., Tsuji, Y. & Yamazaki, T. (Eds), Tsunamiites - features and implication. Elsevier, Amsterdam, 185-202.
  • Clapperton, C., 1993. Quaternary geology and geomorphology of South America. Elsevier, Amsterdam, 779 pp.
  • Clark, C.D., Hughes, A.L.C., Greenwood, S.L., Spagnolo, M. & Ng, F.S.L., 2009. Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws. Quaternary Science Reviews 28, 677-692.
  • Cloos, H., 1936. Einführung in die Geologie. Borntraeger, Berlin. Cojan, I. & Thiry, M., 1992. Seismically induced deformation structures in Oligocene shallow-marine and aeolian coastal sands (Paris Basin). Tectonophysics 206, 79-89.
  • Collinson, J.D., 2003a. Deformation of sediments. [In:] Middleton, G.V. (Ed.), Encyclopedia of sediments and sedimerntary rocks. Kluwer Academic Publishers, Dordrecht, 190-193.
  • Collinson, J.D., 2003b. Deformation structures and growth faults. [In:] Middleton, G.V. (Ed.), Encyclopedia of sediments and sedimerntary rocks. Kluwer Academic Publishers, Dordrecht, 190-193.
  • Collinson, J.D. & Thompson, D.B., 1982. Sedimentary structures. George Allen and Unwin, London, 194 pp.
  • Collo, G. & Giardino, G., 1997. Deformation of “Villafranchian” lacustrine sediments in the Chisone Valley (Western Alps, Italy). Journal of Geodynamics 24, 281-292.
  • Crowell, J.C., 1957. Origin of pebbly mudstones. Geological Society of America Bulletin 68, 993-1009.
  • Curran, H.A. & Martin, A.J., 2003. Complex decapod burrows and ecological relationships in modern and Pleistocene intertidal carbonate environments, San Salvador Island, Bahamas. Palaeogeography, Palaeoclimatology, Palaeoecology 192, 229-245.
  • Dana, J.D., 1849. Geology. United States exploring expedition during the years 1838, 1839, 1840, 1841, 1842, under the command of Charles Wilkes, U.S.N., Vol. 10. Philadelphia, 756 pp.
  • Darwin, Ch., 1851. Geological observations on coral reefs, volcanic islands and on South America, part III. Smith, Elder and Co., London.
  • Dasgupta, P., 2008. Experimental decipherment of the soft-sediment deformation observed in the upper part of the Talchir Formation (Lower Permian), Jharia Basin, India. Sedimentary Geology 205, 100-110.
  • Dashtgard, S.E., Murray, R., Gingras, K. & Pemberton, S.G., 2008. Grain-size controls on the occurrence of bioturbation. Palaeogeography, Palaeoclimatology, Palaeoecology 257, 224-243.
  • Davies, R.J., Swarbrick, R.E., Evans, R.J. & Huuse, M., 2007. Birth of a mud volcano: East Java, 29 May 2006. GSA Today 17, 4-9.
  • Davies, R.J., Brumm, M., Manga, M., Rubiandini, R., Swarbrick, R. & Tingay, M., 2008. The East Java mud volcano (2006 to present): an earthquake or drilling trigger? Earth and Planetary Science Letters 272, 627- 638.
  • Davies, W. & Cave, R., 1976. Folding and cleavage determined during sedimentation. Sedimentary Geology 15, 89-133.
  • Davies, S.J. & Gibling, M.R., 2003. Architecture of coastal and alluvial deposits in an extensional basin: the Carboniferous Joggins Formation of eastern Canada. Sedimentology 50, 415-439.
  • De Gibert, J.M. & Sáez, A., 2009. Paleohydrological significance of trace fossil distribution in Oligocene fluvial-fan-to-lacustrine systems of the Ebro Basin, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 272, 162-175.
  • De Glopper, R.J., 1973. Subsidence after drainage of the deposits in the former Zuyder Zee and in the brackish and marine forelands of The Netherlands. Van Zee tot Land 50, 205 pp.
  • Dehandschutter, B., Vandycke, S., Sintubin, M., Vandenberghe, N. & Wouters, L., 2005. Brittle fractures and ductile shear bands in argillaceous sediments: inferences from Oligocene Boom Clay (Belgium). Journal of Structural Geology 27, 1095-1112.
  • Deynoux, M. & Ghienne, J.-F., 2004. Late Ordovician glacial pavements revisited: a reappraisal of the origin of striated surfaces. Terra Nova 16, 95-101.
  • Dilk R.F., 1964. Contemporary erosion in the heads of submarine canyons. Geological Society of America, Special Paper 76, 45. Dionne, J.-C., 1998. Sedimentary structures made by shore ice in muddy tidal-flat deposits, St. Lawrence estuary, Québec. Sedimentary Geology 116, 261-274.
  • Dott Jr., R.H., 1963. Dynamics of subaqueous gravity depositional proceses. American Association of Petroleum Geologists Bulletin 47, 104-128.
  • Dott Jr., R.H. & Howard, J.K., 1962. Convolute lamination in non-graded sequences. Journal of Geology 70, 114- 120.
  • Draganits, E., Schlaf, J., Grasemann, B. & Argles, T., 2008. Giant submarine landslide grooves in the Neoproterozoic-Lower Cambrian Phe Formation, northwest Himalaya: mechanisms of formation and palaeogeographic implications. Sedimentary Geology 205, 126-141.
  • Dreimanis, A., 1993. Small to medium-sized glacitectonic structures in till and in its substratum and their comparison with mass movement structures. Quaternary International 18, 69-79.
  • Dugan, B. & Flemings, P.B., 2002. Fluid flow and stability of the US continental slope offshore New Jersey from the Pleistocene to the present. Geofluids 2, 137-146.
  • Dugué, O., 1995. Séismites dans le Jurassique supérieur du Bassin anglo-parisien (Normandie, Oxfordien supérieur, Calcaire gréseux de Hennequeville). Sedimentary Geology 99, 73-93.
  • Duringer, Ph., Schuster, M., Genise, J.F., Mackaye, H.T., Vignaud, P. & Brunet, M., 2007. New termite trace fossils: galleries, nests and fungus combs from the Chad basin of Africa (Upper Miocene - Lower Pliocene). Palaeogeography, Palaeoclimatology, Palaeoecology 251, 323-353.
  • Dylik, J., 1956. Struktury peryglacjalne w Tarzymiechach i ich znaczenie dla morfogenezy i stratygrafii czwartorzedu [Periglacial structures in Tarzymiechy and their significance for the morphogenesis and Quaternary. Stratigraphy]. Biuletyn Peryglacjalny 3, 15-30.189
  • Dżułyński, S., 1963. Polygonal structures in experiments and their bearing upon some periglacial phenomena. Bulletin de l’Académie Polonaise de Sciences, Série des Sciences Géologiques et Géographiques 11, 145-150.
  • Dżułyński, S. & Radomski, A., 1966. Experiments on bedding disturbances produced by the impact of heavy suspensions upon horizontal sedimentary layers. Bulletin de l’Académie Polonaise de Sciences, Série des Sciences Géologiques et Géographiques 14, 227-230.
  • Dżułyński, S. & Smith, A.J., 1963. Convolute lamination, its origin, preservation and directional significance. Journal of Sedimentary Petrology 33, 616-627.
  • Dżułyński, S. & Walton, E.K., 1963. Experimental production of sole markings. Transactions, Edinburgh Geological Society 19, 279-305.
  • Dżułyński, S. & Walton, E.K., 1965. Sedimentary features of flysch and greywackes. Elsevier, Amsterdam, 274 pp.
  • Eden, D.J. & Eyles, N., 2001. Description and numerical model of Pleistocene iceberg scours and ice-keel turbated facies at Toronto, Canada. Sedimentology 48, 1079-1102.
  • Edwards, M.B., 2004. Glacial influence on Neoproterozoic sedimentation: the Smalfjord Formation, northern Norway - discussion. Sedimentology 51, 1409-1417.
  • Eissmann, L., 1981. Periglaziäre Prozesse und Permafroststrukturen aus sechs Kaltzeiten des Quartärs. Altenburger Naturwissenschaftliche Forschungen 1, 171 pp.
  • Elliot, R.E., 1965. A classification of subaqeous sedimentary structures based on theological and kinematical parameters. Sedimentology 5, 193-209.
  • Elrick, M. & Snider, A.C., 2002. Deep-water stratigraphic cyclicity and carbonate mud mound development in the Middle Cambrian Marjum Formation, House Range, Utah, USA. Sedimentology 49, 1021-1047.
  • Emery, K.O., 1945. Entrapment of air in beach sands. Journal of Sedimentary Petrology 15, 39-49.
  • Enzel, Y., Kadan, G. & Eyal, K., 2000. Holocene earthquakes inferred from a fan-delta sequence in the Dead Sea graben. Quaternary Research 53, 34-48.
  • Eyles, C.H., Eyles, N. & Grey, K., 2007. Palaeoclimate implications from deep drilling of Neoproterozoic strata in the Officer Basin and Adelaide Rift Complex of Australia; a marine record of wet-based glaciers. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 291-312.
  • Eyles, N. & Clark, B.M., 1985. Gravity-induced softsediment deformation in glaciomarine sequences of the Upper Proterozoic Port Aiskaig Formation, Scotland. Sedimentology 32, 789-814.
  • Eyles, N. & Eyles, C.,H., 2000. Subaqueous mass flow origin for Lower Permian diamictites and associated facies of the Grant Group, Barbwire Terrace, Canning Basin, Western Australia. Sedimentology 47, 343-356.
  • Eyles, N. & Januszczak, N., 2007. Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: where is the evidence of global glaciation? Basin Research 19, 179-198.
  • Eyles, N. & Meulendyk, Th., 2008. Groundpenetrating radar study of Pleistocene ice scours on a glaciolacustrine sequence boundary. Boreas 37, 226- 233.
  • Eyles, N., Boyce, J.I. & Barendregt, R.W., 1999. Hummocky moraine: sedimentary record of stagnant Laurentide Ice Sheet lobes resting on soft beds. Sedimentary Geology 123, 163-174.
  • Ferreira, T.O., Otero, X.L., Vidal-Torrado, P. & Macías, F., 2007. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma 142, 36-46.
  • Fielding, C.R., Bann, K.I., Maceachern, J.A., Tye, S.C. & Jones, B.G., 2006. Cyclicity in the nearshore marine to coastal, Lower Permian, Pebbley Beach Formation, southern Sydney Basin, Australia: a record of relative sea-level fluctuations at the close of the Late Palaeozoic Gondwanan ice age. Sedimentology 53, 435-463.
  • Fodor, L. & Turki, S.M., Dalub, H. & Al Gerbi, A., 2005. Fault-related folds and along-dip segmentation of breaching faults: syn-diagenetic deformation in the south-western Sirt basin, Libya. Terra Nova 17, 121- 128.
  • Folkestad, A. & Steel, R.J., 2001. The alluvial cyclicity in hornelen basin (Devonian Western Norway) revisited: a multiparameter sedimentary analysis and stratigraphic implications. Norwegian Petroleum Society Special Publications 10, 39-50.
  • Fornós, J.J., Pomar, L. & Rodríguez-Perea, R., 1986. Deformation structures in eolian calcarenites recognized as mammal footprints. Abstracts 7th IAS Regional Meeting (Krakow, 1986), 63.
  • Fornós, J.J., Bromley, R.G., Clemmensen, L.B. & Rodríguez- Perea, A., 2002. Tracks and trackways of Myotragus balearicus Bate (Artiodactyla, Caprinae) in Pleistocene aeolianites from Mallorca (Balearic Islands, Western Mediterranean). Palaeogeography, Palaeoclimatology, Palaeoecology 180, 277-313.
  • Frey , R.W., 1975. The study of trace fossils - a synthesis of principles, problems and procedures in ichnology. Springer, New York, N.Y., 562 pp.
  • French, H.M., 2007. The periglacial environment (3rd ed.). Wiley & Sons, Chichester, 458 pp.
  • Galli, P., Galadini, F. & Pantosti, D., 2008. Twenty years of paleoseismology in Italy. Earth-Science Reviews 88, 89-117.
  • Garzanti, E., 1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Sciences 17, 805-827.
  • Garziglia, S., Migeon, S., Ducassou, E., Loncke, L., Mascle, J., 2008. Mass-transport deposits on the Rosetta province (NW Nile deep-sea turbidite system, Egyptian margin): characteristics, distribution, and potential causal processes. Marine Geology 250, 180- 198.
  • Geikie, A., 1882. Text-book of geology (1st ed.). MacMillan, London, 971 pp.
  • Giordano, G. & Cas, R.A.F., 2001. Structure of the Upper Devonian Boyd Volcanic Complex, south coast New South Wales: implications for the Devonian- Carboniferous evolution of the Lachlan Fold Belt. Australian Journal of Earth Sciences 48, 49-61.
  • Ghosh, S.K., Sengupta, S. & Dasgupta, S., 2002. Tectonic deformation of soft-sediment convolute folds. Journal of Structural Geology 24, 913-923.
  • Glaessner, M.F. & Wade, M., 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology 9, 599-628.
  • Glennie, K. & Evamy, F.D., 1968. Dikaka: plants and plant-root structures associated with aeolian sand. Palaeogeography, Palaeoclimatology, Palaeoecology 4, 77-87.
  • Glover, T., Adamson, K., Whittington, R., Fitches, B. & Craig, J., 2000. Evidence for soft-sediment deformation - the Duwaysah Slide of the Gargaf Arch, central Libya. [In:] Sola, M.A. & Worsley, D. (Eds), Geological exploration in Murzuq Basin, 417-430.
  • Goldring, R., Pollard, J.E., Radley, J.D., 2005. Trace fossils and pseudofossils from the Wealden strata (nonmarine Lower Cretaceous) of southern England. Cretaceous Research 26, 665-685.
  • Gong, Y.-M. & Si. Y.-L., 2002. Classification and evolution of metazoan traces at a topological level. Lethaia 35, 263-274.
  • Goodall, T.M., North, C.P. & Glennie, K.W., 2000. Surface and subsurface sedimentary structures produced by salt crusts. Sedimentology 47, 99-118.
  • Goździk, J. & Van Loon, A.J., 2007. The origin of a giant downward directed clastic dyke in a kame (Bełchatów mine, central Poland). [In:] Gruszka, B., Van Loon, A.J. & Zieliński, T. (Eds), Quaternary Geology - Bridging the gap between East and West. Sedimentary Geology 193, 71-79.
  • Gregory, M.R., Campbell, K.A., Alfaro, A. & Hudson, N., 2009. Bee and ant burrows in Quaternary “coffee rock” and Holocene sand dunes, Kowhai Bay, Northland, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 102-110.
  • Gripp, K., 1929. Glaziologische und geologische Ergebnisse der hambergischen Spitzbergen-Ekspedition 1927. Abhandlungen des Naturwissenschaftlichen Vereins Hamburg 22, 147-247.
  • Gruszczyński, M., Marshall, J.D., Goldring, R., Coleman, M.L., Małkowski, K., Gaździcka, E, Semil, J. & Gatt, P., 2008. Hiatal surfaces from the Miocene Globigerina Limestone Formation of Malta: biostratigraphy, sedimentology, trace fossils and early diagenesis. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 239-251.
  • Gruszka, B. & Van Loon, A.J., 2001. Deformations in clay varves and their relationship with the tectonic activity of the Kleszczów graben during the Pleistocene. [In:] Konferencja ‘Deformacje osadów nieskonsolidowanych. Reologia i struktury’ (Slesin, 2001), 4-6.
  • Gruszka, B. & Van Loon, A.J., 2007. Pleistocene glaciolacustrine breccias of seismic origin in an active graben (central Poland). [In:] Gruszka, B., Van Loon, A.J. & Zieliński, T. (Eds), Quaternary Geology - Bridging the gap between East and West. Sedimentary Geology 193, 93-104.
  • Guiraud, M. & Plaziat, J.-C., 1993. Seismites in the fluviatile Bima sandstones: identification of paleoseisms and discussion of their magnitudes in a Cretaceous synsedimentary strike-slip basin (Upper Benue, Nigeria). Tectonophysics 225, 493-522.
  • Gutschick, R.C. & Lamborn, R., 1975. Bifungites, trace fossils from Devonian-Mississippian rocks of Pennsylvania and Montana, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology 18, 193-212.
  • Hagadorn, J. & Bottjer, D.J., 1999. Restriction of a late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios 14, 73-85.
  • Hall, R.C.B. & Ells, B.G., 2002. The origin and significance of load-induced deformation structures in softsediment and lava at the base of the Archaean Ventersdorp Supergroup, South Africa. Journal of African Earth Sciences 35, 135-145.
  • Hansen, J.P.V., Cartwright, J.A.. Huuse, M. & Clausen, O.R., 2005. 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid-Norway. Basin Research 17, 123-139.
  • Harris, C., 2007. Periglacial landforms - slope deposits and forms. [In:] Elias, S.A. (Ed.), Encyclopedia of Quaternary science. Elsevier, Amsterdam 3, 2207-2217.
  • Harris, Ch., Murton, J. & Davies, M.C.R., 2000. Softsediment deformation during thawing of ice-rich frozen soils: results of scaled centrifuge modelling experiments. Sedimentology 47, 687-700.
  • Hart, J.K. & Boulton, G.S., 1991. The interrelation of glaciotectonic and glaciodepositional processes within the glacial environment. Quaternary Science Reviews 10, 335-350.
  • Haughton, P.D.W., Barker, S.P. & McCaffrey, W.D., 2003. ‘Linked’ debrites in sand-rich turbidite systems - origin and significance. Sedimentology 50, 459-482.
  • Heezen, B.C. & Hollister, C.D., 1971. The face of the deep. Oxford University Press, New York, 659 pp.
  • Herd, C.D.K., Froese, D.G., Walton, E.L., Kofman, R.S., Herd, E.P.K. & Duke, M.J.M., 2008. Anatomy of a young impact event in central Alberta, Canada: prospects for the missing Holocene impact record. Geology 36, 955-958.
  • Hertweck, G., Wehrmann, A., Liebezeit, G., 2007. Bioturbation structures of polychaetes in modern shallow marine environments and their analogues to Chondrites group traces. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 382-389.
  • Hesthammer, J. & Fosen, F., 1999. Evolution and geometries of gravitational collapse structures with examples from the Statfjord Field, northern North Sea. Marine and Petroleum Geology, 16, 259-281.
  • Hibsch, C., Alvarado, A., Yepes, H., Perez, V.H. & Sébrier, M., 1997. Holocene liquefaction and soft-sediment deformation in Quito (Ecuador): A paleoseismic history recorded in lacustrine sediments. Journal of Geodynamics 24, 259-280.
  • Hickson, Yh.A. & Lowe, D.R., 2002. Facies architecture of a submarine fan channel-levee complex: the Juniper Ridge Conglomerate, Coalinga, California. Sedimentology 49, 335-362.
  • Hoffman, P.F. & Schrag, D.P., 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129-155.
  • Horváth, Z., Michéli, E., Mindszenty, A. & BerényiÜveges, J., 2005. Soft-sediment deformation structures in Late MioceneBPleistocene sediments on the pediment of the Mátra Hills (Visonta, Atkár, Verseg): Cryoturbation, load structures or seismites? Tectonophysics 410, 81-95.
  • Houmark-Nielsen, M., 2003. Signature and timing of the Kattegat Ice Stream: onset of the Last Glacial Maximum sequence at the southwestern margin of the Scandinavian Ice Sheet. Boreas 32, 227-241.
  • Hurst, A., Cartwright, J., Huuse, M., Jonk, R., Schwab, A., Duranti, D. & Cronin, B., 2003. Significance of large-scale sand injectites as long-term fluid conduits: evidence from seismic data. Geofluids 3, 263-274.
  • Isbell, J.L., Miller, M.F., Babcock, L.E. & Hasiotis, S.T., 2001. Ice-marginal environment and ecosystem prior to initial advance of the late Palaeozoic ice sheet in the Mount Butters area of the central Transantarctic Mountains, Antarctica. Sedimentology 48, 953-970.
  • Iverson, R.M., 2003. Gravity-driven mass flows. [In:] G.V. Middleton (Ed.), Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, Dordrecht, 347-353.
  • Jackson, C.A.L., Gawthorpe, R.L., Carr, I.D. & Sharp, I.R., 2005. Normal faulting as a control on the stratigraphic development of shallow marine syn-rift sequences: the Nukhul and Lower Rudeis Formations, Hammam Faraun fault block, Suez Rift, Egypt. Sedimentology 52, 313-338.
  • Jago, J.B., Gum, J.C., Burtt, A.C. & Haines, P.W., 2003. Stratigraphy of the Kanmantoo Group: a critical element of the Adelaide Fold Belt and the Palaeo- Pacific plate margin, Eastern Gondwana. Australian Journal of Earth Sciences 50, 343-363.
  • Jahn, A., 1975. Problems of the periglacial zone. PWN, Warszawa, 219 pp.
  • Jahn, A., 1977. Struktury zwiazane z klinami lodowymi w osadach plejstocenskich [Structures connected with ice wedges in Pleistocene deposits]. Studia Geologica Polonica 52, 177-194.
  • Jahn, A. & Czerwiński, J., 1965. The role of impulses in the process of periglacial soil structure formation. Acta Universitatis Wratislaviensis 44, 3-24.
  • Jary, Z., 2009. Periglacial markers within the Late Pleistocene loess-palaeosol sequences in Poland and Western Ukraine. Quaternary International 198, 124- 135.
  • Jewell, H.E. & Ettensohn, F.R., 2004. An ancient seismite response to Taconian far-field forces: the Cane Run Bed, Upper Ordovician (Trenton) Lexington Limestone, Central Kentucky (USA). Journal of Geodynamics 37, 487-511.
  • Johnston, B., 1983. Tepee structures. [In:] Structure and stratigraphy of the Val Verde Basin / Devils River Uplift, Texas. West Texas Geological Society Publication 83-77 + 139-140.
  • Jones, A.T. & Fielding, C.R., 2008. Sedimentary facies of a glacially influenced continental succession in the Pennsylvanian Jericho Formation, Galilee Basin, Australia. Sedimentology 55, 531-556.
  • Jones, M.E. & Preston, R.M.F. (Eds), 1987. The geological deformation of sediments and sedimentary rocks. Geological Society, London, Special Publication, Vol. 29, 342 pp.
  • Kataoka, K. & Nakajo, T., 2002. Volcaniclastic resedimentation in distal fluvial basins induced by large-volume explosive volcanism: the Ebisutoge- Fukuda tephra, Plio-Pleistocene boundary, central Japan. Sedimentology 49, 319-334.
  • Kelley, R.I. & Martini, I.P., 1986. Pleistocene glaciolacustrine deltaic deposits of the Scarborough Formation, Ontario, Canada. Sedimentary Geology 47, 27-52.
  • Kimura, G., Koga, K. & Fujioka, K., 1989. Deformed soft sediments at the junction between the Mariana and Yap Trenches. Journal of Structural Geology 11, 463- 472.
  • Knaust, D. & Hauschke, N., 2004. Trace fossils versus pseudofossils in Lower Triassic playa deposits, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 215, 87-97.
  • Knecht, R.J., Benner, J.S., Rogers, D.C. & Ridge, J.C., 2009. Surculichnus bifurcauda n. igen., n. isp., a trace fossil from Late Pleistocene glaciolacustrine varves of the Connecticut River valley, USA, attributed to notostracan crustaceans based on neoichnological experimentation. Palaeogeography, Palaeoclimatology, Palaeoecology 272, 232-239.
  • Kopf, A., Stegmann, S., Delisle, G., Panahi, B., Aliyev, C.S., Guliyev, I. (in press). In situ cone penetration tests at the active Dashgil mud volcano, Azerbaijan: evidence for excess liquid pressure, updoming, and possible future violent eruption. Marine and Petroleum Geology (in press).
  • Kos, A.M., 2001. Stratigraphy, sedimentary development and palaeoenvironmental context of a naturally accumulated pitfall cave deposit from southeastern Australia. Australian Journal of Earth Sciences 48, 621- 632.
  • Kuenen, Ph.H., 1953. Graded bedding with observations on Lower Paleozoic rocks of Britain. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, Reeks I 20, 1-47.
  • Kuenen, Ph.H., 1958. Experiments in geology. Transactions, Geological Society Glasgow 23,1-28.
  • Kuenen, Ph.H., 1966. Experimental turbidite lamination in a circular flume. Journal of Geology 74, 523-545.
  • Kuenen, Ph.H. & Menard, H.W., 1952. Turbidity currents, graded and non-graded deposits. Journal of Sedimentary Petrology 22, 83-96.
  • Kuenen, Ph.H. & Migliorini, C.I., 1950. Turbidity currents as a cause of graded bedding. Journal of Geology 58, 91-127.
  • Lafrance, B., Legault, D. & Ames, D.E., 2008. The formation of the Sudbury breccia in the North Range of the Sudbury impact structure. Precambrian Research 165, 107-119.
  • Leeder, M.R., 1987. Sediment deformation structures and the palaeotectonic analysis of sedimentary basins, with case-study from the Carboniferous of northern England. [In:] M.E. Jones & R.M.F. Preston (Eds), Deformation of Sediments and Sedimentary Rocks. Geological Society, London, Special Publication, Vol. 29, 137-146.
  • Le Guerroue, E., Allen, Ph. A. & Cozzi, A., 2006. Parasequence development in the Ediacaran Shuram Formation (Nafun Group, Oman): high-resolution stratigraphic test for primary origin of negative carbon isotopic ratios. Basin Research 18, 205-219.
  • Le Heron, D.P., 2007. Late Ordovician glacial record of the Anti-Atlas, Morocco. Sedimentary Geology 201, 93-110.
  • Le Heron, D.P., Sutcliffe, O.E., Whittington, R.J. & Craig, J., 2005. The origins of glacially related soft-sediment deformation structures in Upper Ordovician glaciogenic rocks: implication for ice-sheet dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 218, 75-103.
  • Le Heron, D.P., Ghienne, J.-F., El Houicha, M., Khoukhi, Y. & Rubino, J.L., 2007. Maximum extent of ice sheets in Morocco during the Late Ordovician glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 200-226.
  • Leith, C.K., 1923. Structural geology. Henry Holt, New York, 390 pp.
  • Le Roux, J.P., Nielsen, S.N., Kemnitz, H. & Henriquez, Á., 2008. A Pliocene mega-tsunami deposit and associated features in the Ranquil Formation, southern Chile. Sedimentary Geology 203, p. 164-180.
  • Lian, O.B. & Hicock, S.R., 2000. Thermal conditions beneath parts of the last Cordilleran Ice Sheet near its centre as inferred from subglacial till, associated sediments, and bedrock. Quaternary International 68- 71, 147-162.
  • Lian, O.B., Hicock, S.R. & Dreimanis, A., 2003. Laurentide and Cordilleran fast ice flow: some sedimentological evidence from Wisconsinan subglacial till and its substrate. Boreas 32, 102-113.
  • Licciardi, J.M., Clark, P.U., Jenson, J.W. & Macayeal, D.R., 1998. Deglaciation of a soft-bedded Laurentide ice sheet. Quaternary Science Reviews 17, 427-448.
  • Lien, T., Walker, R.G. & Martinsen, O.J., 2003. Turbidites in the Upper Carboniferous Ross Formation, western Soft-sediment deformation structures in siliciclastic sediments: an overview 49 Ireland: reconstruction of a channel and spillover system. Sedimentology 50, 113-148.
  • Lock, B.E., Choh, S.-J. & Willis, J.J., 2001. Tepees and other surficial deformation features of Cretaceous rocks in central and west Texas, resulting from Late Cenozoic caliche formation. GCAGS Transactions 51, 173-185.
  • Long, D.G.F., 2004. The tectonostatigraphic evolution of the Huronian basement and the subsequent basin fill: geological constraints on impact models of the Sudbury event. Precambrian Research 129, 203-223.
  • Longva, O. & Bakkejord, K.J., 1990. Iceberg deformation and erosion in soft sediments, southeast Norway. Marine Geology 92, 87-104.
  • López-Gamundi, O.R., 1993. Pebbly mudstones in the Cretaceous Pigeon Point Formation, western California: a study in the transitional stages from submarine slumps to cohesive debris flows. Sedimentary Geology 84, 37-50.
  • Loseth, T.M., Steel, R.J., Crabaugh, J.P. & Schellpeper, M., 2006. Interplay between shoreline migration paths, architecture and pinchout distance for siliciclastic shoreline tongues: evidence from the rock record. Sedimentology 53, 735-767.
  • Lowe, D.R., 1975. Water escape structures in coarsegrained sediments. Sedimentology 22,157-204. Lowe, D.R., 1976. Subaqueous liquefied and fluidized flows and their deposits. Sedimentology 23, 285-308.
  • Lowe, D.R., Guy, M. & Palfrey, A., 2003. Facies of slurry-flow deposits, Britannia Formation (Lower Cretaceous), North Sea: implications for flow evolution and deposit geometry. Sedimentology 50, 45-80.
  • Lowe, D.R. & LoPiccolo, R.D., 1974. Characteristics and origins of dish and pillar structures. Journal of Sedimentary Petrology 44, 484-501.
  • Lyell, Ch., 1841. Elements of geology (2nd ed.). London. Macar, P., 1948. Les pseudo-nodules du Famennien et leur origine. Annales de la Société Géologique Belge 72, 121-150.
  • Maltman, A., 1984. On the term ‘soft-sediment deformation’. Journal of Structural Geology 6, 589--592.
  • Maltman, A. (Ed.), 1994. The geological deformation of sediments. Chapman & Hall, London, 362 pp.
  • Marshall, J.D., 2000. Sedimentology of a Devonian fault-bounded braidplain and lacustrine fill in the lower part of the Skrinkle Sandstones, Dyfed, Wales. Sedimentology 47, 325-342.
  • Matsuoka, N., 2001. Solifluction rates, processes and landforms: a global review. Earth-Science Reviews 55, 107-134.
  • Mazumder, R. & Altermann, W., 2007. Discussion on new aspects of deformed cross-strata in fluvial sandstones: Examples from Neoproterozoic formations in northern Norway by S.L. Røe and M. Hermansen. Sedimentary Geology 198, 351-353.
  • Mazumder, R., Van Loon, A.J. & Arima, M., 2006. Softsediment deformation structures in the Earth’s oldest seismites. Sedimentary Geology 186, 19-26.
  • Mazumder, R., Rodríguez-López, J.P., Arima, M. & Van Loon, A.J., 2009. Palaeoproterozoic seismites (finegrained facies of the Chaibasa Fm., E India) and their soft-sediment deformation structures. [In:] Reddy, S., Mazumder, R., Evans, D., Collins, A. (Eds), History of the Palaeoproterozoic of E India. Geological Society, London, Special Publication 323 (in press).
  • Mazzini, A., Svensen, H., Akhmanov, G.G., Aloisi, G., Planke, S., Malthe-Sørenssen & Istadi, B., 2007. Triggering and dynamic evolution of the Lusi mud volcano, Indonesia. Earth and Planetary Science Letters 261, 375-388.
  • Mazzini, A., Svensen, H., Planke, S., Guliyev, I., Akhmanov, G.G., Fallik, T. & Banks, D. (in press). When mud volcanoes sleep: insight from seep geochemistry at the Dashgil volcano, Azerbaijan. Marine and Petroleum Geology (in press).
  • McCabe, A., 2008. Glacial geology and geomorphology - The landscapes of Ireland. Dunedin Academic Press, Edinburgh, 274 pp.
  • McCaffrey, W.D., Gupta, S. & Brunt, R., 2002. Repeated cycles of submarine channel incision, infill and transition to sheet sandstone development in the Alpine Foreland Basin, SE France. Sedimentology 49, 623-635.
  • McCall, G.J.H., 2009. Half a century of progress in research on terrestrial impact structures: a review. Earth-Science Reviews 92, 99-116.
  • McDonald, B. & Shilts, W.W., 1975. Interpretation of faults in glaciofluvial sediments. [In:] A. Jopling & B. McDonald (Eds), Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publication 23, 123-131.
  • McKee, E.D. & Goldberg, M., 1969. Experiments on formation of contorted structures in mud. Geological Society of America Bulletin 80, 231-244.
  • McKee, E.D., Reynolds, M.A. & Baker, C.H., 1962. Laboratory studies on deformation in unconsolidated sediment. United States Geological Survey, Professional Paper 450-D, D151-D155
  • McLane, M., 1995. Sedimentology. Oxford University Press, New York, 423 pp.
  • McLoughlin, N., Wilson, I.A. & Brasier, M.D., 2008. Growth of synthetic stromatolites and wrinkle structures in the absence of microbes - implications for the early fossil record. Geobiology 6, 95-105.
  • McManus, J.& Bajabaa, S., 1998. The importance of air escape processes in the formation of dish-and-pillar and teepee structures within modern and Precambrian fluvial deposits. Sedimentary Geology 120, 337-343.
  • Mead, W.J., 1925. The geologic role of dilatancy. Journal of Geology 33, 685-698.
  • Mellere, D., Plink-Björklund, P. & Steel, R., 2002. Anatomy of shelf deltas at the edge of a prograding Eocene shelf margin, Spitsbergen. Sedimentology 49, 1181-1206.
  • Melvin, J., 1986. Upper Carboniferous fine-grained turbiditic sandstones from Southwest England: a model for growth in an ancient delta-fed subsea fan. Journal of Sedimentary Petrology 56, 19-34.
  • Menzies, J., 1989. Subglacial hydraulic conditions and their possible impact upon subglacial bed formation. Sedimentary Geology 62, 125-150.
  • Miall, A.D., 1985. Sedimentation on an early Proterozoic margin under glacial influence: the Gowganda 50 A.J. van Loon Formation (Huronian), Elliot Lake area, Ontario, Canada. Sedimentology 32, 763-788.
  • Mills, P.C., 1983. Genesis and diagnostic value of soft-sediment deformation structures - a review. Sedimentary Geology 35, 83-104.
  • Mohindra, R. & Bagati, T.N., 1996. Seismically induced soft-sediment deformation structures (seismites) around Sumdo in the lower Spiti valley (Tethys Himalaya). Sedimentary Geology 101, 69-83.
  • Mokhtari Fard, A. & Van Loon, A.J., 2004. Deformation of an early Preboreal deposit at Nykvarn (SE Sweden) as a result of the bulldozing effect of a grounding iceberg. Sedimentary Geology 165, 355-369.
  • Molgat, M. & Arnott, R.W.C., 2001. Combined tide and wave influence on sedimentation patterns in the Upper Jurassic Swift Formation, south-eastern Alberta. Sedimentology 48, 1353-1369.
  • Montenat, C., Barrier, P. & Ott d’Estevou, P., 2002. The Vigny limestones: a record of Palaeocene (Danian) tectonic-sedimentary events in the Paris Basin. Sedimentology 49, 421-440.
  • Montenat, C., Barrier, P., Ott d’Estevou, P. & Hibsch, C., 2007. Seismites: an attempt at critical analysis and classification. Sedimentary Geology 196, 5-30.
  • Moran, S.R., 1971. Glacitectonic structures in drift. [In:] R.P. Goldtwaith (Ed.), Till, a symposium. Ohio State University Press, Ohio, 127-148.
  • Moretti, M., 2000. Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits (Apulian foreland, southern Italy). Sedimentary Geology 135, 167-179.
  • Moretti, M. & Sabato, L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant’Arcangelo Basin (Southern Italy): Seismic shock vs. overloading. Sedimentary Geology 196, 31-45.
  • Moretti, M., Alfaro, P., Caselles, O. & Canas, J.A., 1999. Modelling seismites with a digital shaking table. Tectonophysics 304, 369-383.
  • Moretti, M., Soria, J.M., Alfaro, P. & Walsh, N., 2001. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain. Facies 44, 283-294.
  • Mountney, N.P., 2004. The sedimentary signature of deserts and their response to environmental change. Geology Today 20, 101-106.
  • Mountney, N.P. & Jagger, A., 2004. Stratigraphic evolution of an aeolian erg margin system: the Permian Cedar Mesa Sandstone, SE Utah, USA. Sedimentology 51, 713-743.
  • Mountney, N.P. & Thompson, D.B., 2002. Stratigraphic evolution and preservation of aeolian dune and damp/wet interdune strata: an example from the Triassic Helsby Sandstone Formation, Cheshire Basin, UK. Sedimentology 49, 805-833.
  • Mulder, Th. & Alexander, J., 2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269-299.
  • Murton, J.B., 2001.Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Global and Planetary Change 28, 175-192.
  • Nagtegaal, P.J.C., 1963. Convolute lamination, metadepositional ruptures and slumping in an exposure near Pobla de Segur (Spain). Geologie en Mijnbouw 42, 363-374.
  • Nagtegaal, P.J.C., 1965. An approximation to the genetic classification of non-organic sedimentary structures. Geologie en Mijnbouw 44, 347-352.
  • Nakajima, T. & Satoh, M., 2001. The formation of large mudwaves by turbidity currents on the levees of the Toyama deep-sea channel, Japan Sea. Sedimentology 48, 435-463.
  • Neef, G. & Larsen, D.F., 2003. Devonian fluvial strata in and adjacent to the Emsian-Eifelian Moona Vale Trough, western New South Wales. Australian Journal of Earth Sciences 50, 81-96.
  • Netoff, D., 2002. Seismogenically induced fluidization of Jurassic erg sands, south-central Utah. Sedimentology 49, 65-80.
  • Neuendorf, K.K.E., Mehl Jr., J.P. & Jackson, J.A., 2005. Glossary of geology (5th ed.). American Geological Institute, Alexandria, 779 pp.
  • Neuwerth, R., Suter, F., Guzman, C.A. & Gorin, G.E., 2006. Soft-sediment deformation in a tectonically active area: The Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Colombia). Sedimentary Geology 186, 67-88.
  • Nevin, S.M., 1942. Principles of structural geology (3rd ed.). John Wiley and Sons, New York, 320 pp.
  • Obi, G.C. & Okogbue, C.O., 2004. Sedimentary response to tectonism in the Campanian-Maastrichtian succession, Anambra Basin, Southeastern Nigeria. Journal of African Earth Sciences 38, 99-108.
  • Occhietti, S., 1973. Les structures et déformations engendrées par les glaciers - essai de mise au point. I. Déformations et structures glacitectoniques. Revue Géographique de Montreal 27, 365-380.
  • Orti, F., Rosell, L. & Anadon, P., 2003. Deep to shallow lacustrine evaporites in the Libros Gypsum (southern Teruel Basin, Miocene, NE Spain): an occurrence of pelletal gypsum rhythmites. Sedimentology 50, 361- 386.
  • Ortner, H., 2007. Styles of soft-sediment deformation on top of a growing fold system in the Gosau Group at Muttekopf, Northern Calcareous Alps, Austria: slumping versus tectonic deformation. Sedimentary Geology,196, 99-118.
  • Owen, G., 1987. Deformation processes in unconsolidated sands. [In:] M.E. Jones & R.F.M. Preston (Eds), Deformation mechanisms in sediments and sedimentary rocks. Geological Society, London, Special Publication, Vol. 29, 11-24.
  • Owen, G., 1996. Anatomy of water-escape cusp in Upper Proterozoic Torridon sandstones, Scotland. Sedimentary Geology 103, 117-128.
  • Owen, G. & Moretti, M., 2008. Determining the origin of soft-sediment deformation structures: a case study from Upper Carboniferous delta deposits in southwest Wales, UK. Terra Nova 20, 237-245.
  • Page B.M., 1978. Franciscan melanges compared with olistostromes of Taiwan and Italy. Tectonophysics 47, 223-246.
  • Parker, T.J. & McDowell, A.N., 1955. Model studies of salt dome tectonics. American Association of Petroleum Geologists Bulletin 39, 2384-2470.
  • Paz, J.D.S., Rossetti, D.F. & Macambira, M.J.B., 2005. An Upper Aptian saline pan/lake system from the Brazilian equatorial margin: integration of facies and isotopes. Sedimentology 52, 1303-1321.
  • Pepper, J.F., De Witt, J. & Demarest, D.F., 1954. Geology of the Bedford shale and Berea sandstone in the Appalachian basin. United States Geological Survey, Professional Paper 259, 111 pp.
  • Pettijohn, F.J. & Potter, P.E., 1964. Atlas and glossary of primary sedimentary structures. Springer, New York, 370 pp.
  • Pflüger, F., 1995. Morphodynamik, Aktualismus und Sedimentstrukturen. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 195, 75-83.
  • Phillips, E., Merritt, J., Auton, C. & Golledge, N., 2007. Microstructures in subglacial and proglacial sediments: understanding faults, folds and fabrics, and the influence of water on the style of deformation. Quaternary Science Reviews 26, 1499-1528.
  • Piotrowski, J.A. & Tulaczyk, S., 1999. Subglacial conditions under the last ice sheet in northwest Germany: ice-bed separation and enhanced basal sliding? Quaternary Science Reviews 18, 737-751.
  • Piotrowski, J.A., Larsen, N.K. & Junge, F.W., 2004. Reflections on soft subglacial beds as a mosaic of deforming and stable spots. Quaternary Science Reviews,23, 993-1000.
  • Piotrowski, J.A., Larsen, N.K., Menzies, J. & Wysota, W., 2006. Formation of subglacial till under transient bed conditions: deposition, deformation, and basal decoupling under a Weichselian ice sheet lobe, central Poland. Sedimentology 53, 83-106.
  • Plink-Björklund, P., 2005. Stacked fluvial and tidedominated estuarine deposits in high-frequency (fourth-order) sequences of the Eocene Central Basin, Spitsbergen. Sedimentology 52, 391-428.
  • Plint, A.G. & Wadsworth, J.A., 2003. Sedimentology and palaeogeomorphology of four large valley systems incising delta plains, western Canada Foreland Basin: implications for mid-Cretaceous sea-level changes. Sedimentology 50, 1147-1186.
  • Portman, C., Andrews, J.E., Rowe, P.J., Leeder, M.R. & Hoogewerff, J., 2005. Submarine-spring controlled calcification and growth of large Rivularia bioherms, Late Pleistocene (MIS 5e), Gulf of Corinth, Greece. Sedimentology 52, 441-465.
  • Potter, P.E. & Pettijohn, F.J., 1963. Paleocurrents and basin analysis. Springer, Berlin, 296 pp.
  • Pufahl, P.K. & Fralick, Ph.W., 2004. Depositional controls on Palaeoproterozoic iron formation accumulation, Gogebic Range, Lake Superior region, USA. Sedimentology 51, 791-808.
  • Pratt, B.R., 2001, 2001. Septarian concretions: internal cracking caused by synsedimentary earthquakes. Sedimentology 48, 189-213.
  • Raitzsch, M., Völker, D. & Heubeck, C., 2007. Neogene sedimentary and mass-wasting processes on the continental margin off south-central Chile inferred from dredge samples. Marine Geology 244, 166-183.
  • Raukas, A., 2000a. Study of meteoritic matter for precise regional stratigraphy. Geologos 5, 77-86.
  • Raukas, A., 2000b. Investigation of impact spherules - a new promising method for the correlation of Quaternary deposits. Quaternary International 68/71, 241-252.
  • Raukas, A., Tirmaa, R., Kaup, E. & Kimmel, 2001. The age of the Ilumetsa meteorite craters in southeast Estonias. Meteoritics and Planetary Science 36, 1507-1514.
  • Rautman, C.A. & Dott, R.H., 1977. Dish structures formed by fluid escape in Jurassic shallow marine sandstones. Journal of Sedimentary Petrology 47, 101-106.
  • Ravnås, R., Windelstad, J., Mellere, D., Nøttvedt, A., Stur Sjøblom, T., Steel, R.J. & Wilson, R.C.L., 1997. A marine Late Jurassic syn-rift succession in the Lusitanian Basin, western Portugal - tectonic significance of stratigraphic signature. Sedimentary Geology 114, 237- 266.
  • Rebata-H., L.A., Gingras, M.K., Rasanen, M.E. & Barberi, M., 2006. Tidal-channel deposits on a delta plain from the Upper Miocene Nauta Formation, Marañacutén Foreland Sub-basin, Peru. Sedimentology 53, 971-1013.
  • Rebesco, M., Camerlengi, A. & Van Loon, A.J., 2008. Contourite research: a field in full development. [In:] Rebesco, M. & Camerlenghi, A. (Eds), Contourites. Developments in Sedimentology, Vol. 60. Elsevier, Amsterdam, 3-8.
  • Reineck, H.-E., 1955. Eisblumen im Watt. Natur und Volk 85, 400-402.
  • Reineck, H.-E. & Singh, I.B., 1973. Depositional sedimentary environments. Springer, Berlin, 439 pp.
  • Rettger, R.E., 1935. Experiments on soft-rock deformation. American Association of Petroleum Geologists Bulletin 19, 271-292.
  • Ricci-Lucchi, F. & Amorosi, A., 2003. Bedding and internal structures. [In:] G.V. Middletron (Ed.), Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, Dordrecht, 53-59.
  • Ridente, D. & Trincardi, F., 2006. Active foreland deformation evidenced by shallow folds and faults affecting late Quaternary shelf-slope deposits (Adriatic Sea, Italy). Basin Research 18, 171-188.
  • Rieu, R., Allen, P.A., Etienne, J.L., Cozzi, A. & Wiechert, U., 2006. A Neoproterozoic glacially influenced basin margin succession and ‘atypical’ cap carbonate associated with bedrock palaeovalleys, Mirbat area, southern Oman. Basin Research 18, 471-496.
  • Rocha-Campos, A.C., Canuto, J.R. & Dos Santos, P.R., 2000. Late Paleozoic glaciotectonic structures in northern Paraná Basin, Brazil. Sedimentary Geology 130, 131-143.
  • Rodríguez-López, J.P., Merléndez, N., Soria, A.R., Liesa, C.L. & Van Loon, A.J., 2007. Lateral variability of ancient seismites related to differences in sedimentary facies (the syn-rift Escucha Formation, mid-Cretaceous, Spain). Sedimentary Geology 201, 461-484.
  • Rodriguez-Lopez, J.P., Liesa, C.L., Melendez, N. & Soria, A.R., 2007. Normal fault development in a sedimentary succession with multiple detachment levels: the Lower Cretaceous Oliete sub-basin, Eastern Spain. Basin Research 19, 409-435.
  • Rodríguez-Pascua, M.A., Calvo, J.P., De Vicente, G. & Gómez-Gras, D., 2000. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology 135, 117-135.
  • Rodríguez-Pascua, M.A., Pérez-López, R., Calvo, J.P. & García del Cura, M.A., 2008. Recent seismogenic fault activity in a Late Quaternary closed-lake graben basin (Albacete, SE Spain). Geomorphology 102, 169-178.
  • Røe, S.-L. & Hermansen, M., 2006. New aspects of deformed cross-strata in fluvial sandstones: examples from Neoproterozoic formations in northern Norway - Reply. Sedimentary Geology 198, 355-358.
  • Røe, S.-L. & Hermansen, M., 2007. New aspects of deformed cross-strata in fluvial sandstones: examples from Neoproterozoic formations in northern Norway. Sedimentary Geology 186, 283-293.
  • Romanovsky, N.N., 1973. Regularities in formation of frost-fissures and development of frost-fissure polygons. Biuletyn Peryglacjalny 23, 237-277.
  • Rossetti, D.F. & Góes, A.M., 2000. Deciphering the sedimentological imprint of paleoseismic events: an example from the Aptian Codó Formation, northern Brazil. Sedimentary Geology 135, 137-156.
  • Rossetti, D.F. & Santos Jr, A.E., 2003. Events of sediment deformation and mass failure in Upper Cretaceous estuarine deposits (Cametá Basin, northern Brazil) as evidence for seismic activity. Sedimentary Geology 161, 107-130.
  • Rossetti, D.F., Góes, A.M., Truckenbrodt, W. & Anaisse, J., 2000. Tsunami-induced large-scale scour-and-fill structures in Late Albian to Cenomanian deposits of the Grajaú Basin, northern Brazil. Sedimentology 47, 309-323.
  • Rousell, D.H., Fedorowich, J.S., Dressler, B.O., 2003. Sudbury Breccia (Canada): a product of the 1850 Ma Sudbury Event and host to footwall Cu-Ni-PGE deposits. Earth-Science Reviews 60, 147-174.
  • Ruszczyńska-Szenajch, H., 2001. “Lodgement till” and “deformation till”. Quaternary Science Reviews 20, 579-581.
  • Rygel, M.C., Gibling, M.R. & Calder, J.H., 2004. Vegetationinduced sedimentary structures from fossil forests in the Pennsylvanian Joggins Formation, Nova Scotia. Sedimentology 51, 531-552.
  • Samaila, N.K., Abubakar, M.B., Dike, E.F.C. & Obaje, N.G., 2006. Description of soft-sediment deformation structures in the Cretaceous Bima Sandstone from the Yola Arm, Upper Benue Trough, Northeastern Nigeria. Journal of African Earth Sciences 44, 66-74.
  • Sanders, J.E., 1960. Origin of convolute lamination. Geological Magazine 97, 409-421.
  • Sanders, J.E., 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. [In:] G.V. Middleton (Ed.), Primary sedimentary structures and their hydrodynamic interpretation. Society of Economic Paleontologists and Mineralogists Special Publication, Vol. 12, 192-219.
  • Schieber, J., 1998. Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic Belt Supergroup, Montana, U.S.A. Sedimentary Geology 120, 105-124.
  • Schmidt, E., 1953. Eiszeitlicher “Kissenboden” im sülichen Oberrheintal. Eiszeitalter und Gegenwart 3, 79-83.
  • Schnellmann, M., Anselmetti, F.S., Giardini, D. & Mckenzie, J.A., 2005. Mass movement-induced foldand- thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology 52, 271- 289.
  • Schnyder, J., Baudin, F. & Deconinck, J.F., 2005. A possible tsunami deposit around the Jurassic - Cretaceous boundary in the Boulonnais area (northern France). Sedimentary Geology 177, 209-227.
  • Schomacker, A. & Kjaer, K.H., 2008. Quantification of dead-ice melting in ice-cored moraines at the high- Arctic glacier Holmströmbreen, Svalbard. Boreas 37, 211-225.
  • Schurch, P. & Becker, A., 2005. Studies on ‘precarious rocks’ in the epicentral area of the AD 1356 Basle earthquake, Switzerland. Geophysical Journal International 163, 689-697.
  • Schwan, J. & Van Loon, A.J., 1979. Structural and sedimentological characteristics of a Weichselian kame terrace at Sønderby Klint, Funen, Denmark. Geologie en Mijnbouw 58, 305-319.
  • Schwan, J. & Van Loon, A.J., 1981. Structure and genesis of a buried ice-pushed zone near Rold (Funen, Denmark). [In:] A.J. van Loon (Ed.): Quaternary geology: a farewell to A.J. Wiggers. Geologie en Mijnbouw 60, 385-394. Schwan, J., Van Loon, A.J., Van der Gaauw, P.G. & Steenbeek, R., 1980a. The sedimentary sequence of a Weichselian intraglacial lake at Ormehøj (Funen, Denmark). Geologie en Mijnbouw 59, 129-138.
  • Schwan, J., Van Loon, A.J., Steenbeek, R. & Van der Gaauw, P., 1980b. Intraformational clay diapirism and extrusion in Weichselian sediments at Ormehøj (Funen, Denmark). Geologie en Mijnbouw 59, 241-250.
  • Seguret, M., Moussine-Pouchkine, A., Gabaglia, G.R. & Bouchette, F., 2001. Storm deposits and stormgenerated coarse carbonate breccias on a pelagic outer shelf (South-East Basin, France). Sedimentology 48, 231-254.
  • Seilacher, A., 1964. Biogenic sedimentary structures. [In:] J. Imbrie & N.D. Newell (Eds), Approaches to palaeoecology. Wiley, New York, 296-316.
  • Seilacher, A., 2007. Trace fossil analysis. Springer, New York, 226 pp.
  • Seilacher, A., Buatois, L.A. & Mángano, M.G., 2005. Trace fossils in the Ediacaran-Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology 227, 323-356.
  • Semeniuk, V., 1986. Calcrete breccia floatstone in Holocene sand developed by storm-uprooted trees. Sedimentary Geology 48, 183-192.
  • Seret, G., 1993. Microstructures in thin sections of several kinds of till. Quaternary International 18, 97-101.
  • Shiki, T., Tsuji, Y., Yamazaki, T. & Minoura, K. (Eds), 2008. Tsunamiites. Elsevier, Amsterdam, 411 pp.
  • Shoemaker, E.M. & Wynn, J.C., 1997. Geology of the Wabar meteorite craters, Saudi Arabia. Lunar and Planetary Science Conference Abstracts 28, 1313-1314.
  • Shuman, B., Newby, P., Donnelly, J.P., Tarbox, A. & Webb, Th., 2005. A record of Late-Quaternary moisture-balance change and vegetation response from the White Mountains, New Hampshire. Annals of the Association of American Geographers 95, 237-248.
  • Simms, M.J., 2007. Uniquely extensive soft-sediment deformation in the Rhaetian of the UK: evidence for earthquake or impact? Palaeogeography, Palaeoclimatology, Palaeoecology 244, 407-423.
  • Sims, J.D., 1978. Annotated bibliography of penecontemporaneous deformational structures in sediments. United States Geological Survey Open File Report 78-510, 79 pp.
  • Singh, S. & Jain, A.K., 2007. Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: Geological evidences of paleoseismicity along active fault zone. Sedimentary Geology 197, 47- 57.
  • Sjørring, S., 1978. Glazialtektonik und Glazialstratigraphie - einige Beispiele aus Dänemark. Eiszeitalter und Gegenwart 28, 119-125.
  • Smellie, J., Nelson, A. & Williams, M., 2006. Fire and ice: unravelling the climatic and volcanic history of James Ross Island, Antarctic Peninsula. Geology Today 22, 220-226
  • Smith, J.V., 2000. Flow pattern within a Permian submarine slump recorded by oblique folds and deformed fossils, Ulladulla, south-eastern Australia. Sedimentology 47, 357-366.
  • Smoot, J.P., Litwin, R.J., Bischoff, J.L. & Lund, S.J., 2000. Sedimentary record of the 1872 earthquake and “Tsunami” at Owens Lake, southeast California. Sedimentary Geology 135, 241-254.
  • Sorby, H.C., 1859. On the contorted stratification of the drift of the coast of Yorkshire. Proceedings of the Geolological and Polytechnical Society, West Riding, Yorkshire 1849-1859, 220-224.
  • Spalluto, L., Moretti, M., Festa, V. & Tropeano, M., 2007. Seismically-induced slumps in Lower-Maastrichtian peritidal carbonates of the Apulian Platform (southern Italy). Sedimentary Geology 196, 81-98.
  • Sporli, K.B. & Rowland, J.V., 2007. Superposed deformation in turbidites and syn-sedimentary slides of the tectonically active Miocene Waitemata Basin, northern New Zealand. Basin Research 19, 199-216.
  • Stankowski, W.T.J., 2001. The geology and morphology of the natural reserve “Meteoryt Morasko”. Planetary and Space Science 49, 749-753.
  • Stewart, H.B., 1956. Contorted sediments in modern coastal lagoon (Mexico) explained by laboratory experiments. American Association of Petroleum Geologists Bulletin 40, 153-161.
  • Strachan, L.J. & Alsop, G.I., 2006. Slump folds as estimators of palaeoslope: a case study from the Fisherstreet Slump of County Clare, Ireland. Basin Research 18, 451-470.
  • Sturgeon, G.M., Davis, J.M., Linder, E. & Harter, R.D., 2006. Heterogeneities in glaciofluvial deposits using an example from New Hampshire. Ground Water 44, 528-539.
  • Sumner, D.Y. & Grotzinger, J.P., 2004. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology 51, 1273-1299.
  • Surlyk, F., Milàn, J. & Noe-Nygaard, N., 2008. Dinosaur tracks and possible lungfish aestivation burrows in a shallow lake; lowermost Cretaceous, Bornholm, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 267, 292-304.
  • Sylvester, Z. & Lowe, D.R., 2004. Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania. Sedimentology 51, 945-972.
  • Talling, P.J., Amy, L.A., Wynn, R.B., Peakall, J. & Robinson, M., 2004. Beds comprising debrite sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional environments. Sedimentology 51, 163-194.
  • Tipper, J.C., Sach, V.J. & Heizmann, E.P.J., 2003. Loading fractures and Liesegang laminae: new sedimentary structures found in the north-western North Alpine Foreland Basin (Oligocene-Miocene, south-west Germany). Sedimentology 50, 791-813.
  • Tosolini, A-M.P., McLoughlin, S. & Drinnan, A.N., 1999. Stratigraphy and fluvial sedimentary facies of the Neocomian lower Strzelecki Group, Gippsland Basin, Victoria. Australian Journal of Earth Sciences 46, 951- 970.
  • Trincardi, F., Cattaneo, A., Correggiari, A. & Ridente, D., 2004. Evidence of soft sediment deformation, fluid escape, sediment failure and regional weak layers within the late Quaternary mud deposits of the Adriatic Sea. Marine Geology 213, 91-119.
  • Tripsanas, E.K., Piper, D.J.W., Jenner, K.A. & Bryant, W.R., 2008. Submarine mass-transport facies: new perspectives on flow processes from cores on the eastern North American margin. Sedimentology 55, 97-136.
  • Tuttle, M.P., Dyer-Williams, K. & Barstow, N.L., 2002. Paleoliquefaction study of the Clarendon - Linden fault system, western New York State. Tectonophysics 353, 263-286.
  • Uchman, A., 2003. Trends in diversity, density and complexity of graphoglyptid trace fossils: evolutionary and palaeoenvironmental aspects. Palaeogeography, Palaeoclimatology, Palaeoecology 192, 123-142.
  • Uchmasn, A., Kazakauskasd, V. & Gaigalas, A., 2009. Trace fossils from Late Pleistocene varved lacustrine sediments in eastern Lithuania. Palaeogeography, Palaeoclimatology, Palaeoecology 272, 199-211.
  • Uchman, A., Bak, K. & Rodríguez-Tovar, F.J., 2008. Ichnological record of deep-sea palaeoenvironmental changes around the Oceanic Anoxic Event 2 (Cenomanian-Turonian boundary): an example from the Barnasiówka section, Polish Outer Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology 262, 61-71.
  • Uličny, D., 2001. Depositional systems and sequence stratigraphy of coarse-grained deltas in a shallowmarine, strike-slip setting: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology 48, 599-628.
  • Upadhyay, R., 2003. Earthquake-induced soft-sediment deformation in the lower Shyok river valley, northern Ladakh, India. Journal of Asian Earth Sciences 21, 413- 421.
  • Van der Heide, G.D., 1955. Aspecten van het archaeologisch onderzoek in het Zuiderzeegebied (Aspects of the archaeological investigation of the Zuiderzee area). Van Zee tot Land 16, 62 pp.
  • Van Loon, A.J., 1970. Grading of matrix and pebble characteristics in syntectonic pebbly mudstones and associated conglomerates, with examples from the Carboniferous of northern Spain. Geologie en Mijnbouw 49, 41-55.
  • Van Loon, A.J., 1972. A prograding deltaic complex in the Upper Carboniferous of the Cantabrian Mountains (Spain): the Prioro-Tejerina Basin. Leidse Geol. Mededelingen 48, 1-81.
  • Van Loon, A.J., 1983. The stress system in mud flows during deposition, as revealed by the fabric of some Carboniferous pebbly mudstones in Spain. [In:] M.W. van den Berg & R. Felix (Eds), Special issue in honour of J.D. de Jong. Geologie en Mijnbouw 62, 493-498.
  • Van Loon, A.J., 1990. Geologie rond het vriespunt (Geology around the freezing point). Grondboor & Hamer 44, 1-3.
  • Van Loon, A.J., 1992. The recognition of soft-sediment deformations as early-diagenetic features - a literature review. [In:] G.V. Chilingarian & K.H. Wolf (Eds), Diagenesis, III. Developments in Sedimentology 47. Elsevier, Amsterdam, 135-189.
  • Van Loon, A.J., 1999. The sedimentological response of glaciofluvial and glaciolacustrine systems to abrupt climatic changes. [In:] Recognition of abrupt climate change in clastic sedimentary environments: methods, limitations, and potential. Geologiska Föreningens i Stockhlom Förhandlingar 121, 169-174.
  • Van Loon, A.J., 2000. The strangest 0.05% of the geological history. Earth-Science Reviews 50, 125-133. Van Loon, 2001. Changing the face of the Earth. Earth- Science Reviews 52, 371-379.
  • Van Loon, A.J., 2002. Soft-sediment deformations in the Kleszczów Graben (central Poland). [In:] P.K. Bose, S. Sarkar & P.G. Ericksson (Eds), Rift basins: sedimentology and palaeontology - Chanda Memorial Issue. Sedimentary Geology 147, 57-70.
  • Van Loon, A.J., 2003. How ‘hard’ are soft-rock deformations? Earth-Science Reviews 61, 181-188.
  • Van Loon, A.J., 2004. From speculation to model: the challenge of launching new ideas in the earth sciences. Earth-Science Reviews 65, 305-313.
  • Van Loon, A.J., 2006a. Deformation of a modern alluvial plain. Geomorphology 78, 351-358.
  • Van Loon, A.J., 2006b. Review of the sedimentary types and stratigraphic positions of the Pleistocene glacial diamictons in the Bełchatów mine (Kleszczów Graben, central Poland). Studia Quaternaria 23, 3-9.
  • Van Loon, A.J., 2006c. Lost loesses. Earth-Science Reviews 74, 309-316.
  • Van Loon, A.J., 2008a. The nature of Mawsonites (Ediacara fauna). [In:] S. Maruyama & M. Santosh (Eds), Snowball Earth to Cambrian explosion. Gondwana Research 14, 175-181.
  • Van Loon, A.J., 2008b. Could ‘Snowball Earth’ have left thick glaciomarine deposits? [In:] S. Maruyama & M. Santosh (Eds), Snowball Earth to Cambrian explosion. Gondwana Research 14, 73-81.
  • Van Loon, A.J., 2008c. Interpretation of dinosaur behaviour on the basis of swim tracks. Stratigraphy and Sedimentology of Oil-Gas Basins 2008 (1), 61-70.
  • Van Loon, A.J. (in press). Sedimentary volcanoes: overview and implications for the definition of a “volcano” on Earth. [In:] Cañón-Tapia, E., Szakacs, A. (Eds), What is a volcano? New answers to an old question. GSA Special Paper (in press).
  • Van Loon, A.J. & Brodzikowski, K., 1987. Problems and progress in the research on soft-sediment deformations. Sedimentary Geology 50, 167-193.
  • Van Loon, A.J. & K. Brodzikowski, 1994. Earlydiagenetic deformation structures in the overburden of the Bełchatów brown-coal mine (central Poland): a predictive tool regarding engineering-geological conditions during exploitation. [In:] K.H. Wolf & G.V. Chilingarian (Eds): Diagenesis, IV. Developments in Sedimentology, Vol. 51. Elsevier, Amsterdam, 49-77.
  • Van Loon, A.J. & Wiggers, A.J., 1975a. Holocene lagoonal silts (formerly called “sloef”) from the Zuiderzee. Sedimentary Geology 13, 47-55.
  • Van Loon, A.J. & Wiggers, A.J., 1975b. Composition and grain-size distribution of the Holocene Dutch “sloef” (Almere Member of the Gringen Formation). Sedimentary Geology 13, 237-251.
  • Van Loon, A.J. & Wiggers, A.J., 1975c. Erosional features in the lagoonal Almere Member (“sloef”) of the Groningen Formation (Holocene, central Netherlands). Sedimentary Geology 16, 253-265.
  • Van Loon, A.J. & Wiggers, A.J., 1976a. Primary and secondary synsedimentary structures in the lagoonal Almere Member (Groningen Formation, Holocene, The Netherlands). Sedimentary Geology 16, 89-97.
  • Van Loon, A.J. & Wiggers, A.J., 1976b. Metasedimentary “graben” and associated structures in the lagoonal Almere Member (Groningen Formation, The Netherlands). Sedimentary Geology 16, 237-254.
  • Van Loon, A.J., Brodzikowski, K. & Gotowała, R., 1984. Structural analysis of kink bands in unconsolidated sands. Tectonophysics 104, 351-374.
  • Van Loon, A.J., Brodzikowski, K. & Gotowała, R., 1985. Kink structures in unconsolidated fine-grained sediments. [In:] R. Hesse (Ed.), Sedimentology of siltstone and mudstone. Sedimentary Geology 41, 283- 300.
  • Van Loon, A.J., Brodzikowski, K. & Zieliński, T., 1995. Shock-induced resuspension deposits from a Pleistocene proglacial lake (Kleszczów Graben, central Poland). Journal of Sedimentary Research A65, 417-422.
  • Vanneste, K., Meghraoui, M. & Camelbeeck, T., 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309, 57-79.
  • Van Straaten, L.M.J.U., 1954. Sedimentology of recent tidal flat deposits and the Psammites du Condroz (Devonian). Geologie en Mijnbouw 16, 25-47.
  • Vanuxem, L., 1842. Geology of New York, Pt. III, Survey of the 3rd District, 306 pp.
  • Van Vliet-Lanoë, B., Magyari, A. & Meilliez, F., 2004. Distinguishing between tectonic and periglacial deformations of Quaternary continental deposits in Europe. Global and Planetary Change 43, 103-127.
  • Visher, G.S. & Cunningham, R.D., 1981. Convolute laminations - a theoretical analysis: example of a Pennsylvanian sandstone. Sedimentary Geology 28, 175-188.
  • Walker, R., Jackson, J. & Baker, C., 2003. Surface expression of thrust faulting in eastern Iran: source parameters and surface deformation of the 1978 Tabas and 1968 Ferdows earthquake sequences. Geophysical Journal International 152, 749-765.
  • Waller, R.I., Van Dijk, Th.A.G.P. & Knudsen, O., 2008. Subglacial bedforms and conditions associated with the 1991 surge of Skeidarárjökull, Iceland. Boreas 37, 179-194.
  • Warren, J.K., 2000. Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. Australian Journal of Earth Sciences 47, 179-208.
  • Washburn, A.L., 1973. Periglacial processes and environments. Edward Arnolds, London.
  • Weinberger, L., 1944. Frostspalten und Froststrukturen in Schottern bei Leipzig. Geologische Rundschau 34, 539-544.
  • Went, D.J., 2005. Pre-vegetation alluvial fan facies and processes: an example from the Cambro-Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology 52, 693-713.
  • West Texas Mesonet, 2008. Dawson County storms - April 23, 2008. http://images.google.nl/imgres?imgurl=http://www.mesonet.ttu.edu/cases/23Apr2008Storms/LamesaHailcraters2.jpg&imgrefurl=http://www.mesonet.ttu.edu/cases/23Apr2008Storms/20080423.html&h=600 &w=800&sz=133&hl=nl&start=14&usg=__kHfS hcrcJrKNDjVi3TQbvOJdbDA=&tbnid=cdIGzsI_ fVjJeM:&tbnh=107&tbnw=143&prev=/images%3Fq%3Dhail%2Bimpact%26gbv%3D2%26ndsp%3D20%2 6hl%3Dnl%26sa%3DN (accessed 2008-08-28).
  • Wetzel, A., Werner, F. & Stow, D.A.V., 2008. Bioturbation and biogenic sedimentary structures in contourites. [In:] Rebesco, M. & Camerlenghi, A. (Eds), Contourites. Developments in Sedimentology 60. Elsevier, Amsterdam, 183-202.
  • Wignall, P.B. & Best, J.L., 2000. The Western Irish Namurian Basin reassessed. Basin Research 12, 59-78.
  • Wignall, P.B. & Best, J.L., 2004. Sedimentology and kinematics of a large, retrogressive growth-fault system in Upper Carboniferous deltaic sediments, western Ireland. Sedimentology 51, 1343-1358.
  • Williams, G.E., 1996. Soft-sediment deformation structures from the Marinoan glacial succession, Adelaide foldbelt: implications for the palaeoaltitude of late Neoproterozoic glaciation. Sedimentary Geology 106, 165-175.
  • Williams, G.E., Gostin, V.A., McKirdy, D.M. & Preiss, W.V. 2008. The Elatina glaciation, late Cryogenian (Marinoan Epoch), South Australia: Sedimentary facies and palaeoenvironments. Precambrian Research 163, 307-331.
  • Williams, P.J., 1962. Quantitative investigations of soil movement in frozen ground phenomena. Biuletyn Peryglacjalny 11, 353-360.
  • Wynn, J.C., 1998. The day that sands got fire. Scientific American Magazine 279 (5), 64-71.
  • Yong, L., Allen, P.A., Densmore, A.L. & Qiang, X., 2003. Evolution of the Longmen Shan Foreland Basin (Western Sichuan, China) during the Late Triassic Indosinian Orogeny. Basin Research 15, 117-138.
  • Young, G.M., Long, D.G.F., Fedo, C.M. & Nesbitt, H.W., 1991. Paleoproterozoic Huronian basin: product of a Wilson cycle punctuated by glaciations and a meteorite impact. Sedimentary Geology 141/142, 233-254.
  • Zieliński, T. & Van Loon, A.J., 1996. Characteristics and genesis of moraine-derived flow till varieties. Sedimentary Geology 101, 119-143.
  • Zieliński, T. & Van Loon, A.J., 1999a. Subaerial terminoglacial fans I: a semi-quantitative sedimentological analysis of the proximal environment. Geologie en Mijnbouw 77, 1-15.
  • Zieliński, T. & Van Loon, A.J., 1999b. Subaerial terminoglacial fans II: a semi-quantitative sedimentological analysis of the middle and distal environments. Geologie en Mijnbouw 78, 73-85.
  • Zieliński, T. & Van Loon, A.J., 2000. Subaerial terminoglacial fans III: overview of sedimentary characteristics and depositional model. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79, 93-107.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2035fa0b-151f-4586-a699-18eb48fb2d64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.