PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency and time domain characteristics of digital control of electric vehicle in-wheel drives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In-wheel electric drives are promising as actuators in active safety systems of electric and hybrid vehicles. This new function requires dedicated control algorithms, making it essential to deliver models that reflect better the wheel-torque control dynamics of electric drives. The timing of digital control events, whose importance is stressed in current research, still lacks an analytical description allowing for modeling its influence on control system dynamics. In this paper, authors investigate and compare approaches to the analog and discrete analytical modeling of torque control loop in digitally controlled electric drive. Five different analytical models of stator current torque component control are compared to judge their accuracy in representing drive control dynamics related to the timing of digital control events. The Bode characteristics and stepresponse characteristics of the analytical models are then compared with those of a reference model for three commonly used cases of motor discrete control schemes. Finally, the applicability of the presented models is discussed.
Rocznik
Strony
829--842
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wz.
Twórcy
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology Narutowicza St. 11/12, 80-233 Gdansk, Poland
autor
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology Narutowicza St. 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] Bera T.K., Bhattacharya K., Samantaray A.K., Evaluation of antilock braking system with an integrated model of full vehicle system dynamics, Simulation Modelling Practice and Theory, no. 19, pp. 2131-2150 (2011).
  • [2] Cabrera J.A., Castillo J.J., Carabias E., Ortiz A., Evolutionary Optimization of a Motorcycle Traction Control System Based on Fuzzy Logic, IEEE Transactions on Fuzzy Systems, vol. 23, no. 5, pp. 1594-1607 (2015).
  • [3] Ha H., Kim J., Lee J., Cornering stability enhancement algorithm for in-wheel electric vehicle, 2014 IEEE International Conference on Industrial Technology (ICIT), pp. 806-809 (2014).
  • [4] Ivanov V., Savitski D., Shyrokau B., A Survey of Traction Control and Anti-lock Braking Systems of Full Electric Vehicles with Individually-Controlled Electric Motors, IEEE Transactions on Vehicular Technology, vol. 64, no. 9, pp. 3878-3896 (2015).
  • [5] Guo H., Yu R., Qiang W., Chen H., Optimal slip based traction control for electric vehicles using feedback linearization, International Conference on Mechatronics and Control, pp. 1159-1164 (2014).
  • [6] Zhang Z., Zhang J., Sun D., Lv C., Research on control strategy of electric-hydraulic hybrid antilock braking system of an electric passenger car, 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 419-424 (2015).
  • [7] Kondratiev I., Nikiforov A., Veselov G., Kolesnikov A., Synergetic control for induction motor based wheel-drive system, 2012 IEEE Int. Electric Vehicle Conference (IEVC), pp. 1-7 (2012).
  • [8] M’sirdi N.K., Rabhi A., Fridman L., Davila J., Delanne Y., Second Order Sliding-Mode Observer for Estimation of Vehicle Dynamic Parameters, International Journal of Vehicle Design, vol 48, no. 3/4, pp. 190-207 (2008).
  • [9] Petersen I., Wheel Slip Control in ABS Brakes using Gain Scheduled Optimal Control with Constraints, PhD Thesis, Norwegian University of Science and Technology, Trondheim (2003).
  • [10] Xiong L., Yu Z.,, Vehicle Dynamic Control of 4 In-Wheel-Motor Drived Electric Vehicle, Electric Vehicles - Modelling and Simulations, ed. Seref Soylu, InTech (2011).
  • [11] Savitski D., Ivanov V., Augsburg K., Shyroka B., Wragge-Morley R., Pütz T., Barber P., The new paradigm of an anti-lock braking system for a full electric vehicle: experimental investigation and benchmarking, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 230, no. 10, pp. 1364-1377 (2015).
  • [12] Opalinski A., Jarzebowicz L., Analytical modeling of electric drives for vehicle traction control systems, 11th Interntional Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo (2015).
  • [13] Banks J., Chwif L., Wornings about simulation, Journal of Simulation, vol. 279, no. 5 (2011).
  • [14] Böcker J., Buchholz O., Can oversampling improve the dynamics of PWM controls?, IEEE International Conference on Industrial Technology (ICIT), Cape Town, pp. 1818-1824 (2013).
  • [15] Jarzebowicz L., Opalinski A., Cisek M., Improving Control Dynamics of PMSM Drive by Estimating Zero-Delay Current Value, Elektronika ir Elektrotechnika, vol. 21, no. 2, pp. 20-23 (2015).
  • [16] Anuchin A., Kozachenko V., Current loop dead-beat control with the digital PI-controller, 16th European Conference on Power Electronics and Applications (EPE’14-ECCE), pp. 1-8 (2014).
  • [17] Hinkkanen M., Awan H.A.A., Qu Z., Tuovinen T., Briz F., Current Control for Synchronous Motor Drives: Direct Discrete-Time Pole-Placement Design, IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1530-1541 (2016).
  • [18] Vajta M., Some Remarks on Pade-Approximation, 3rd TEMPUS-INTCOM Symposium (2000).
  • [19] Silva G.J., Datta A., Bhattacharyya S.P., Controller design via Pade approximation can lead to instability, 40th IEEE Conference on Decision and Control, vol. 5, pp. 4733-4737 (2001).
  • [20] Time R.J., Delay Systems: An Overview of Some Recent Advances and Open Problems, Automatica, vol. 39, pp. 1667-1694 (2003).
  • [21] Gu D-W., Petkov H.P., Konstantinov M.M., Robust Control Design with MATLAB, 2-nd Ed., Springer (2013).
  • [22] Jury E.I., Theory and Application of the Z-Transform Method, R. E. Krieger Publishing Company (1973).
  • [23] Czerwinski R., Rudnicki T., Examination of electromagnetic noises and practical operations of a PMSM motor driven by a DSP and controlled by means of field oriented control, Elektronika ir Elektrotechnika, vol. 20, no. 5, pp. 46-50 (2014).
  • [24] Jarzebowicz L., Karwowski K., Kulesza W.J., Sensorless algorithm for sustaining controllability of IPMSM drive in electric vehicle after resolver fault, Control Engineering Practice, vol. 58, pp. 117-126 (2017).
  • [25] Jarzebowicz L., Errors of a Linear Current Approximation in High-Speed PMSM Drives, IEEE Transactions on Power Electronics, vol. 32, iss. 11, Nov. 2017, pp. 8254-8257 (2017).
  • [26] Nam K.H., AC Motor Control and Electric Vehicle Applications, CRC Press, p. 9 (2010).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2035743f-0938-4a33-883c-780ff80cd16e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.