PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental drivers and trends of postglacial relief development in selected mountain regions in Iceland, Sweden and Norway

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The various mountainous landscapes of Iceland, Sweden and Norway are characterized by Pleistocene glaciations and, connected to this, a dominance of glacially sculpted landforms like U-shaped valley systems, cirques, lakes and hanging valleys. The thickness of glacigenic deposits from this period can vary significantly across different mountain landscapes. In consideration of such legacies, these formerly glaciated landscapes today can be considered at a unique stage of readjustment (recovery) with respect to spatial organization of currently active geomorphic process domains and the magnitude and patterns of sediment storage and sedimentary fluxes. Accordingly, the postglacial relief development in these landscapes is controlled by a wide range of environmental drivers. This study focuses on trends of postglacial relief development in five selected valley systems in formerly glaciated mountain landscapes in eastern Iceland, northern Sweden and western Norway. The selected valley systems Austdalur (23.0 km2) and Hrafndalur (7.0 km2) in eastern Iceland, Latnjavagge (9.0 km2) in northern Sweden, and Erdalen (79.5 km2) and Bødalen (60.1 km2) in western Norway are considered to be representative valley systems for the respective mountain regions they are situated in. Our investigations include a quantitative compilation of contemporary mass transfers in the five valley systems, the quantitative analysis of current Ho/Hi index values for the slope systems in the valleys as well as a semi-quantitative description of changes of valley cross-sectional and longitudinal profiles since deglaciation. As a result, all U-shaped valley systems are characterized by an ongoing valley widening due to the continuing retreat of the existing rock-walls. However, the different valley systems show significant variations in the intensity of slope-channel coupling, in their slope and valley-floor storage behavior, in the development of their longitudinal valley profiles, and in the general intensity of postglacial relief modification. Accordingly, trends of postglacial relief development appear to be rather complex in the different mountain landscapes. It is found that the specific characteristics of the glacially sculpted and inherited valley morphometries are the most important control of the detected differences in slope-channel coupling, storage behavior and longitudinal valley profile development. Lithology and the given weathering resistance of the predominant bedrock are most important for the general intensity of postglacial relief modification. A part from Hrafndalur which is characterized by rhyolites with particularly low weathering resistance, post-glacial modification of the inherited glacially sculpted valley morphometries is altogether little and the landforms have not yet adjusted to the geomorphic surface processes that have been operating under postglacial morphoclimates.
Rocznik
Strony
7--23
Opis fizyczny
Bibliogr. 49 poz., tab., wykr., rys.
Twórcy
  • Geomorphological Field Laboratory (GFL),Sandviksgjerde, Strandvegen 484, NO-7584 Selbustrand, Norway
autor
  • Geomorphological Field Laboratory (GFL),Sandviksgjerde, Strandvegen 484, NO-7584 Selbustrand, Norway
Bibliografia
  • Ballantyne C.K., 2018. Periglacial Geomorphology. John Wiley & Sons, Oxford.
  • Barsch D., 1981. Studien zur gegenwärtigen Geomorphodynamik im Bereich der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada. Heidelberger Geographische Arbeiten 69, 123–161.
  • Barsch D., 1984. Geomorphologische Untersuchungen zum periglazialen Milieu polarer Geosyteme. Zeitschrift für Geomorphologie N.F. Supplementband 50, 107–116.
  • Barsch D., 1986. Forschungen in Polargebieten. Heidelberger Geowissenschaftliche Abhandlungen 6, 33–50.
  • Beylich A.A., 1999. Hangdenudation und fluvial Prozesse in einem subarktisch-ozeanisch geprägten, permafrostfreien Periglazialgebiet mit pleistozäner Vergletscherung. Prozessgeomorphologische Untersuchungen im Bergland der Austfirdir (Austdalur, Ost-Island). Berichte aus der Geowissenschaft, Shaker, Aachen.
  • Beylich A.A., 2000. Geomorphology, sediment budget, and relief development in Austdalur, Austfirdir, East Iceland. Arctic, Antarctic, and Alpine Research 32, 4, 466–477.
  • Beylich A.A., 2003. Present morphoclimates and morphodynamics of Latnjavagge, the Northern Swedish Lapland and Austdalur, East Iceland. Jökull 52, 33–54.
  • Beylich A.A., 2011. Mass transfers, sediment budgets and relief development in cold environments: results of long-term geomorphological drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift für Geomorphologie 55, 145–174.
  • Beylich A.A., 2012. Major controls of mass transfers and relief development in four cold-climate catchment systems in Eastern Iceland, Swedish Lapland and Finnish Lapland (Synthesis Paper). NGF Abstracts and Proceedings of the Geological Society of Norway 1, 87–123.
  • Beylich A.A., 2016a. Controls and variability of solute and sedimentary fluxes in alpine/mountain environments. [in:] A.A. Beylich, J.C. Dixon, Z. Zwolinski (eds.), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, Cambridge, 378–381.
  • Beylich A.A., 2016b. Environmental drivers, spatial variability, and rates of chemical and mechanical fluvial denudation in selected glacierized and nonglacierized cold climate catchment geosystems: from coordinated field data generation to integration and modeling. [in:] A.A. Beylich, J.C. Dixon, Z. Zwolinski (eds.), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, Cambridge, 385–397.
  • Beylich A.A., 2016c. Introduction to the theme, [in:] A.A. Beylich, J.C. Dixon, Z. Zwolinski (eds.), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, Cambridge, 3–4.
  • Beylich A.A., 2016d. The I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments) program. [in:] A.A. Beylich, J.C. Dixon, Z. Zwolinski (eds.), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, Cambridge, 5–10.
  • Beylich A.A., Etienne S., Etzelmüller B., Gordeev V.V., Käyhkö J., Rachold V., Russell A.J., Schmidt K.-H., Sæmundsson Th., Tweed F.S., Warburton J., 2006a. The European Science Foundation (ESF) Network SEDIFLUX – An introduction and overview. Geomorphology 80, 3–7.
  • Beylich A.A., Kneisel C., 2009. Sediment budget and relief development in Hrafndalur, subarctic oceanic Eastern Iceland. Arctic, Antarctic, and Alpine Research 41, 3–17.
  • Beylich A.A., Kolstrup E., Linde N., Pedersen L.B., Thyrsted T., Gintz D., Dynesius L., 2003. Assessment of chemical denudation rates using hydrological measurements, water chemistry analysis and electromagnetic geophysical data. Permafrost and Periglacial Processes 14, 387–397.
  • Beylich A.A., Kolstrup E., Thyrsted T., Gintz D., 2004a. Water chemistry and its diversity in relation to local factors in the Latnjavagge drainage basin, Arctic-oceanic Swedish Lapland. Geomorphology 58, 125–143.
  • Beylich A.A., Kolstrup E., Thyrsted T., Linde N., Pedersen L.B., Dynesius L., 2004b. Chemical denudation in Arcticalpine Latnjavagge (Swedish Lapland) in relation to regolith as assessed by radio magnetotelluric-geophysical profiles. Geomorphology 57, 303–319.
  • Beylich A.A., Laute K., 2014. Combining impact sensor field and laboratory flume experiments with other techniques for studying fluvial bedload transport in steep mountain streams. Geomorphology 218, 72–87.
  • Beylich A.A., Laute K., 2015. Sediment sources, spatiotemporal variability and rates of fluvial bed-load transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology 228, 552–567.
  • Beylich A.A., Laute K., 2016. Chemical denudation in partly glacierized mountain catchments of the fjord landscape in western Norway: contemporary rates, environmental controls, and possible effects of climate change. [in:] A.A. Beylich, J.C. Dixon, Z. Zwolinski (eds.), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, Cambridge, 275–292.
  • Beylich A.A., Laute K., Storms J.E.A., 2017. Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord). Geomorphology 287, 126–143.
  • Beylich A.A., Sandberg O., Molau U., Wache S., 2006b. Intensity and spatio-temporal variability of fluvial sediment transfers in an Arctic-oceanic periglacial environment in northernmost Swedish Lapland (Latnjavagge catchment). Geomorphology 80, 114–130.
  • Brardinoni F., Hassan M.A., 2006. Glacial erosion, evolution of river long-profiles, and the organization of process domains in in mountain drainage basins of coastal British Columbia. Journal of Geophysical Research 111, F01013.
  • Büdel J., 1963. Klima-genetische Geomorphologie. Geographische Rundschau 15, 269–285.
  • Büdel J., 1969. Der Eisrindeneffekt als Motor der Tiefenerosion in der exzessiven Talbildungszone.Würzburger Geographische Arbeiten 25.
  • Büdel J., 1972. Typen der Talbildung in verschiedenen Klimamorphologischen Zonen. Zeitschrift für Geomorphologie N.F. 14, 1–20.
  • Büdel J., 1981. Klima-Geomorphologie. 2, veränderte Auflage, Berlin, Stuttgart.
  • Church M., Slaymaker O., 1989. Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature 337, 452–454.
  • Dedkov J., 1965. Das Problem der Oberflächenverebnungen. Petermanns Geographische Mitteilungen 109, 258–264.
  • Dixon J.C., 2016. Contemporary solute and sedimentary fluxes in Arctic and subarctic environments: current knowledge. [in:] A.A. Beylich, J.C. Dixon, Z. Zwolinski (eds.), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, Cambridge, 39–51.
  • Francou B., 1988. L`éboulisation en haute montagne – Andes et Alpes (six contributions à l`étude du système corniche-éboulis en milieu périglaciaire). Thèse d`État, Université de Paris VII, 2 vol.French H.M., 1996. The periglacial environment. 2nd edition, Addison Wesley Longman, Essex.
  • Hewitt K., Byrne M.-L., English M., Young G. (eds.). 2002, Landscapes of Transition: Landscape Assemblages and Transformations in Cold Regions. Kluwer Academic Publishers, London.
  • Jäckli H., 1957. Gegenwartsgeologie des Bündnerischen Rheingebietes. Beitrag zur Geologischen Karte der Schweiz. Geotechnische Serie 36.
  • Laute K., Beylich A.A., 2012. Influences of the Little Ice Age glacier advance on hillslope morphometry and development in paraglacial valley systems around the Jostedalsbreen ice cap in Western Norway. Geomorphology 167–168, 51–69.
  • Laute K., Beylich A.A., 2013. Holocene hillslope development in glacially formed valley systems in Nordfjord, western Norway. Geomorphology 188, 12–30.
  • Laute K., Beylich A.A., 2014a. Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology 216, 93–113.
  • Laute K., Beylich A.A., 2014b. Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology 218, 16–34.
  • Laute K., Beylich A.A., 2016. Sediment delivery from headwater slope systems and relief development in steep mountain valleys in western Norway. [in:] A.A. Beylich, J.C. Dixon, Z. Zwolinski (eds.), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, Cambridge, 293–312.
  • McEwen L.J., Matthews J.A., 1998. Channel form, bed material and sediment sources of the Sprongdøla, southern Norway: evidence for a distinct periglaciofluvial system. Geografiska Annaler 80A, 17–36.
  • Mercier D., 2002. La dynamique paraglaciaire des versants du Svalbard. Zeitschrift für Geomorphologie 46, 203–222.
  • Rapp A., 1960. Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia. Geografiska Annaler 42, 71–200.
  • Sellier D., 2002. Géomorphologie des versants quartzitiques en millieux froids: l`exemple des montagnes de l`Europe du Nord-Ouest, Thèse d`État, Université Paris 1 Panthéon-Sorbonne.
  • Semmel A., 1994. Periglazialmorphologie. 2, unveränderte Auflage, Wissenschaftliche Buchgesellschaft, Darmstadt.
  • Statham I., 1976. A scree slope rockfall model. Earth Surface Processes 1, 43–62.
  • Tricart J., 1970. Geomorphology of Cold Environments. Macmillan, St. Martin`s Press, New York.
  • Warburton J., 2007. Sediment budgets and rates of sediment transfer across cold environments in Europe: a commentary. Geografiska Annaler 89A, 95–100.
  • Washburn A.L., 1979, Geocryology. A survey of periglacial processes and environments. London.
  • Weise O.R., 1983. Das Periglazial. Geomorphologie und Klima in gletscherfreien, kalten Regionen.Borntraeger, Berlin, Stuttgart.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSWprzeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20341095-9e41-4814-b9d8-f65c56e8ffd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.