Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examines the application of additional water cooling on the mechanical properties of AA7075-T651 alloy friction stir welded butt joints. Underwater joints were produced in a wide range of welding parameters and compared to conventional FSW joints in terms of microhardness and basic mechanical properties. The low-cycle fatigue properties of selected FSW and UWFSW joints were also compared. It was stated that regardless of the welding parameters used, UWFSW joints outperform conventional FSW joints of the AA7075-T651 alloy in terms of YS and UTS, with only slightly lower ductility. The use of machining coolant enables the production of UWFSW joints with higher load-carrying capacity and greater ductility compared to FSW. Under low-cycle fatigue conditions, UWFSW joints exhibit a greater tendency for cyclic hardening, lower plastic strain amplitude, and fewer cycles to failure.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
191--203
Opis fizyczny
Bibliogr. 36 poz., fig., tab.
Twórcy
autor
- Department of Fatigue and Machine Design, Faculty of Mechanical Engineering, Military University of Technology, ul. gen. S. Kaliskiego 2, Warsaw, Poland
autor
- Department of Fatigue and Machine Design, Faculty of Mechanical Engineering, Military University of Technology, ul. gen. S. Kaliskiego 2, Warsaw, Poland
autor
- Department of Fatigue and Machine Design, Faculty of Mechanical Engineering, Military University of Technology, ul. gen. S. Kaliskiego 2, Warsaw, Poland
Bibliografia
- [1] Ahmed M.M.Z., El-Sayed Seleman M.M., Fydrych D., Çam G. Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review. Materials 2023, 16, 2971. https://doi.org/10.3390/ma16082971
- 2. Wang G., Zhao Y., Hao Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. Journal of Materials Science & Technology 2018, 34, 1, 73-91. https://doi.org/10.1016/j.jmst.2017.11.041
- 3. Mishra R.S., Mahoney M.W. Friction Stir Welding and Processing. ASM International, Materials Park, OH, USA (2007)
- 4. Balawender T., Myśliwiec P. Experimental Analysis of FSW Process Forces. Advances in Manufacturing Science and Technology 2020, 44, 2, 51-56. https:// doi.org/10.2478/amst-2019-0006
- 5. Ahmed M. M. Z., El-Sayed Seleman M. M., Fydrych D., Çam G. Review on friction stir welding of dissimilar magnesium and aluminum alloys: Scientometric analysis and strategies for achieving high-quality joints. Journal of Magnesium and Alloys 2023, 11, 11, 4082-4127. https://doi. org/10.1016/j.jma.2023.09.039.
- 6. Gopi S., Mohan D. G., Natarajan E. Mechanical and Corrosion Properties of Friction Stir Welded and Tungsten Inert Gas Welded Phosphor Bronze. Advances in Materials Science 2023, 23. 83-98. https:// doi.org/10.2478/adms-2023-0024.
- 7. Iwaszko J., Kudła K. Evolution of Microstructure and Properties of Air-Cooled Friction-Stir-Processed 7075 Aluminum Alloy. Materials 2022, 15, 7, 2633. https://doi.org/10.3390/ma15072633
- 8. Kosturek R., Torzewski J., Joska Z., Wachowski M., Śnieżek L. The influence of tool rotation speed on the low-cycle fatigue behavior of AA2519- T62 friction stir welded butt joints. Engineering Failure Analysis 2022, 142, 106756. https://doi. org/10.1016/j.engfailanal.2022.106756
- 9. Çam G., Mistikoglu S. Recent developments in friction stir welding of Al-alloys. J. Mater. Eng. Perform. 2014, 23, 1936–1953. https://doi.org/10.1007/ s11665-014-0968-x
- 10. Li D., Yang X., Cui L., He Fa., Zhang X. Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651. Journal of Materials Processing Technology, 2015, 222. https://doi org/10.1016/j.jmatprotec.2015.03.036
- 11. Patel V., De Backer J., Hindsefelt H., Igestrand M., Azimi S., Andersson J., Säll J. High speed friction stir welding of AA6063-T6 alloy in lightweight battery trays for EV industry: Influence of tool rotation speeds. Materials Letters 2022, 318, 132135. https:// doi.org/10.1016/j.matlet.2022.132135
- 12. Joshi A., Gope A., Gope P. C. Effect of post-weld heat treatment on mechanical properties and fatigue crack growth behaviour of friction stir welded 7075-T651 Al alloy. Theoretical and Applied Fracture Mechanics 2023, 123, 103714. https://doi. org/10.1016/j.tafmec.2022.103714
- 13. Wahid M.A., Khan Z.A., Siddiquee A.N. Review on underwater friction stir welding: A variant of friction stir welding with great potential of improving joint properties. Trans. Nonferrous Met. Soc. China 2018, 28, 2, 193-219. https://doi.org/10.1016/ S1003-6326(18)64653-9
- 14. Saravanakumar R., Rajasekaran T., Pandey C. Underwater Friction Stir Welded Armour Grade AA5083 Aluminum Alloys: Experimental Ballistic Performance and Corrosion Investigation. J. of Materi Eng and Perform 2023, 32, 10175–10190. https://doi.org/10.1007/s11665-023-07836-2
- 15. Memon S., Tomków J., Derazkola H.A. Thermo-Mechanical Simulation of Underwater Friction Stir Welding of Low Carbon Steel. Materials 2021, 14, 4953. https://doi.org/10.3390/ma14174953
- 16. Sree Sabari S., Malarvizhi S., Balasubramanian V. Characteristics of FSW and UWFSW joints of AA2519-T87 aluminium alloy: Effect of tool rotation speed. Journal of Manufacturing Processes 2016, 22, 278-289. https://doi.org/10.1016/j. jmapro.2016.03.014
- 17. Liu H.J., Zhang H.J., Yu L. Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy. Materials & Design 2011, 32, 3, 1548-1553. https:// doi.org/10.1016/j.matdes.2010.09.032
- 18. Zhang H.J., Liu H.J., Yu L. Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints. Materials & Design 2011, 32, 8-9, 4402- 4407. https://doi.org/10.1016/j.matdes.2011.03.073
- 19. Rouzbehani R., Kokabi A.H., Sabet H., Paidar M., Ojo O.O. Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy. Journal of Materials Processing Technology 2018, 262, 239-256. https://doi.org/10.1016/j. jmatprotec.2018.06.033
- 20. Byakov A. V., Eremin A. V., Shah R. T., Burkov M. V., Lyubutin P. S., Panin S. V., Maruschak P. O., Menou A., Bencheikh L. Estimating mechanical state of AA2024 specimen under tension with the use of Lamb wave based ultrasonic technique. Molecular Crystals and Liquid Crystals 2017, 655, 1, 94–102. https://doi.org/10.1080/15421406.2017.1360700
- 21. Xu W.F., Liu J.H., Chen D.L., Luan G.H. Low-cycle fatigue of a friction stir welded 2219-T62 aluminum alloy at different welding parameters and cooling conditions. Int J Adv Manuf Technol 2014, 74, 209- 218. https://doi.org/10.1007/s00170-014-5988-z
- 22. Khalaf H.I., Al-Sabur R., Abdullah M.E., Kubit A., Derazkola H.A. Effects of Underwater Friction Stir Welding Heat Generation on Residual Stress of AA6068-T6 Aluminum Alloy. Materials 2022, 15, 2223. https://doi.org/10.3390/ma15062223
- 23. Venugopal A., Mohammad R., Koslan M.F.S., Shafie A., Ali A., Eugene O. Structure Life Extension towards the Structural Integrity of Sukhoi Su-30MKM. Materials 2021, 14, 19, 5562. https://doi. org/10.3390/ma14195562
- 24. Mahoney M.W., Rhodes C.G., Flintoff J.G. et al. Properties of friction-stir-welded 7075 T651 aluminum. Metall Mater Trans A 1998, 29, 1955–1964. https://doi.org/10.1007/s11661-998-0021-5
- 25. Kosturek R., Torzewski J., Wachowski M., Śnieżek L. Effect of Welding Parameters on Mechanical Properties and Microstructure of Friction Stir Welded AA7075-T651 Aluminum Alloy Butt Joints. Materials 2022, 15, 17, 5950. https://doi. org/10.3390/ma15175950
- 26. ASTM E8/E8M-13a, Standard test methods for tension testing of metallic materials, ASTM Int. 2013, 1-28. https://doi.org/10.1520/E0008_E0008M-11
- 27. ISO 12106:2017, Metallic materials — Fatigue testing — Axial-strain-controlled method, ISO 2017, 1-42.
- 28. Kosturek R., Śnieżek L., Torzewski J., Wachowski M. The influence of welding parameters on macrostructure and mechanical properties of Sc-modified AA2519- T62 FSW joints. Manufacturing Review 2020, 7, 28. https://doi.org/10.1051/mfreview/2020025
- 29. Zhang J., Upadhyay P., Hovanski Y., Field D. High-Speed Friction Stir Welding of AA7075- T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History. Metallurgical and Materials Transactions A 2017, 49. https://doi. org/10.1007/s11661-017-4411-4
- 30. Sabari S., Malarvizhi S., Balasubramanian V. Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints. Journal of Materials Processing Technology 2016, 237. https:// doi.org/10.1016/j.jmatprotec.2016.06.015
- 31. Saeyang P., Chanpariyavatevong A., Lamkham K., Siwadamrongpong S., Tantrairatn S. Influence of Cooling Methods in Friction Stir Welding of 7075 Aluminum Alloy. International Journal of Engineering Research in Mechanical and Civil Engineering 2023, 10, 4. https://doi.org/01.1617/vol10/iss4/pid18053
- 32. Iwaszko J. New Trends in Friction Stir Processing: Rapid Cooling—A Review. Transactions of the Indian Institute of Metals, 2022, 75, 1681–1693. https://doi.org/10.1007/s12666-022-02552-2
- 33. Kosturek R., Śnieżek L., Torzewski J., Ślęzak T., Lewczuk R. Influence of post-weld explosive treatment on low cycle fatigue of AA7075-T651 friction stir welded joint. Theoretical and Applied Fracture Mechanics 2024, Volume 133, Part A, October 2024, 104574. https://doi.org/10.1016/j. tafmec.2024.104574
- 34. Feng A.H., Chen D.L., Ma Z.Y. Microstructure and Low-Cycle Fatigue of a Friction-Stir-Welded
- 35. 6061 Aluminum Alloy. Metall Mater Trans A 2010, 41, 2626–2641. https://doi.org/10.1007/ s11661-010-0279-2
- 36. Ince A., Glinka G. A modification of Morrow and Smith–Watson–Topper mean stress correction models. Fatigue & Fracture of Engineering Materials & Structures 2021, 34, 854–867. https://doi. org/10.1111/j.1460-2695.2011.01577.x
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2033635d-da31-4c58-8e2e-3e7c96553bca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.