Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We describe the fields of rational constants of generic four-variable Lotka–Volterra derivations. Thus, we determine all rational first integrals of the corresponding systems of differential equations. Such systems play a role in population biology, laser physics and plasma physics. They are also an important part of derivation theory, since they are factorizable derivations. Moreover, we determine the fields of rational constants of a class of monomial derivations.
Wydawca
Rocznik
Tom
Strony
201--208
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science Nicolas Copernicus University Chopina 12/18 87-100 Toruń, Poland
Bibliografia
- [1] M. A. Almeida, M. E. Magalhães and I. C. Moreira, Lie symmetries and invariants of the Lotka–Volterra system, J. Math. Phys. 36 (1995), 1854–1867.
- [2] O. I. Bogoyavlenski˘ı, Algebraic constructions of integrable dynamical systems—extension of the Volterra system, Russian Math. Surveys 46 (1991), no. 3, 1–64.
- [3] L. Cairó and J. Llibre, Darboux integrability for 3D Lotka–Volterra systems, J. Phys. A 33 (2000), 2395–2406.
- [4] S. Kuroda, Fields defined by locally nilpotent derivations and monomials, J. Algebra 293 (2005), 395–406.
- [5] A. J. Maciejewski, J. Moulin Ollagnier, A. Nowicki and J.-M. Strelcyn, Around Jouanolou non-integrability theorem, Indag. Math. (N.S.) 11 (2000), 239–254.
- [6] A. Nowicki, Polynomial Derivations and Their Rings of Constants, N. Copernicus Univ. Press, Torun, 1994.
- [7] A. Nowicki and J. Zielinski, Rational constants of monomial derivations, J. Algebra 302 (2006), 387–418.
- [8] P. Ossowski and J. Zielinski, Polynomial algebra of constants of the four variable Lotka–Volterra system, Colloq. Math. 120 (2010), 299–309.
- [9] J. Zielinski, The field of rational constants of the Volterra derivation, Proc. Est. Acad. Sci. (2014), to appear.
- [10] J. Zielinski, Rings of constants of four-variable Lotka–Volterra systems, Cent. Eur. J. Math. 11 (2013), 1923–1931.
- [11] J. Zielinski and P. Ossowski, Rings of constants of generic 4D Lotka–Volterra systems, Czechoslovak Math. J. 63 (2013), 529–538.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20317a8c-57ef-4b6c-bd93-a23c470380a6